61. $\mathrm{C}_{45^{-}}$and C_{50}-Carotenoids

Part 7^{1})

Total Synthesis of (all-E, $2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)- and (all-E, $2 R, 6 S, 2^{\prime} R, 6^{\prime} S$) $-2,2^{\prime}-$ Bis(4-hydroxy-3-methylbut-2-enyl) $-\gamma, \gamma$-carotene (Sarcinaxanthin)

by Marc Lanz ${ }^{2}$), Birgit Bartels ${ }^{3}$), and Hanspeter Pfander*
Departement für Chemie und Biochemie, Universität Bern, Freiestr. 3, CH-3012 Bern

(25.XI.96)

The synthesis of sarcinaxanthin $\left(\left(2 R, 6 R, 2^{\prime} R, 6^{\prime} R\right)-1\right)$, a symmetrical C_{50}-carotenoid with two γ-end groups, isolated from Sarcina lutea and from Cellulomonas biazotea as major pigment, was based on the strategy $\mathrm{C}_{20}+\mathrm{C}_{10}+\mathrm{C}_{20}=\mathrm{C}_{50}$ using camphoric acid as starting material for the C_{20}-end group 3 . The key step of the synthesis is a ring enlargement of the cyclopentane derivative 10 with 2,4,4,6-tetrabromocyclohexa-2,5-dien-1-one (TBCO) to give the cyclohexane derivative 11 (Scheme 1). The spectroscopic data of the synthetic compound are in full agreement with the data of the isolated product and give the final proof for the $\left(2 R, 6 R, 2^{\prime} R, 6^{\prime} R\right)$ chirality of natural sarcinaxanthin.

1. Introduction. - Sarcinaxanthin (1) was for the first time isolated by Hertzberg and Jensen from Sarcina lutea and identified as (all-E,2R,6R, $2^{\prime} R, 6^{\prime} R$)-2, 2^{\prime}-bis(4-hydroxy-3-methylbut-2-enyl) $-\gamma, \gamma$-carotene based on UV/VIS, CD, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and mass spectra [2]. The same pigment was isolated by Weeks as major carotenoid in Cellulomonas biazotea [3].

(all-E,2R,6S,2'R,6'S)-1
The synthesis of racemic sarcinaxanthin (1), with the correct relative configuration at the γ-ring end group, using the sulfone method as coupling reaction, has been reported

[^0]previously [4]. In the course of our investigations of the synthesis of cyclic $\mathrm{C}_{50^{-}}$ carotenoids, we have so far reported on the synthesis of C.p. 450 [5] and C.p. 473 [6], both containing a β-end group, as well as of decaprenoxanthin [1] with the ε-end group. In view of the elucidation of the configuration of natural 1 , we report in the present paper the synthesis of (all-E,2R,6R, $2^{\prime} R, 6^{\prime} R$)- and (all- $E, 2 R, 6 S, 2^{\prime} R, 6^{\prime} S$)-sarcinaxanthin ((all$E, 2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)- and (all- $E, 2 R, 6 S, 2^{\prime} R, 6^{\prime} S$)-1, resp.).
2. Results and Discussion. - As strategy for the synthesis of 1 , the well-known approach $\mathrm{C}_{20}+\mathrm{C}_{10}+\mathrm{C}_{20}=\mathrm{C}_{50}$ was applied, using C_{10}-dialdehyde 2 as central building block. As starting material for the synthesis of the optically active C_{20}-phosphonium salts $(2 R, 6 R)$ - and $(2 R, 6 S)-3,(+)$-camphoric acid 4 was selected (Scheme 1). The reduction of 4 with NaBH_{4} and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave the diol 5 which was transformed into 6 by reaction with (tert-butyl)dimethylsilyl chloride ($\left.(t-\mathrm{Bu}) \mathrm{Me}_{2} \mathrm{SiCl}\right)$. Swern oxidation of 6 afforded aldehyde 7 which was transformed by a Wittig reaction with $\mathrm{MePPh}_{3} \mathrm{Br}$ into olefin 8. Deprotection of 8 with tetrabutylammonium fluoride $\left(\mathrm{Bu}_{4} \mathrm{NF}\right)$ gave 9 , and the reaction with $\mathrm{Ac}_{2} \mathrm{O}$ afforded acetate 10 in 73% yield with respect to the starting material 4 [7] [8]. The key step of the synthesis of the optically active end group 3 is the ring enlargement of acetate 10 to the bromocyclohexane derivative 11. According to the mechanism shown in Scheme 2, the reaction of 10 with TBCO (2,4,4,6-tetrabromocyclo-hexa-2,5-dienone) gave a mixture of $\mathbf{1 1}$ and $\mathbf{1 1}$ a (ratio $1: 1.45$) in a yield of 34% [9]. Attempts to separate 11 and 11 a on a preparative scale were unsuccessful and, therefore, the mixture was directly used for the next steps. In addition, 52% of unreacted $\mathbf{1 0}$ was separated from the reaction mixture by flash chromatography and recycled. Although many experiments were carried out to optimize this reaction no improvement was achieved.

Scheme 1

 DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. d) $\mathrm{Ph}_{3} \mathrm{PMeBr}, \mathrm{BuLi}, \mathrm{THF} ; 94 \%$ rel. to 6 . e) $\mathrm{Bu} \mathbf{u}_{4} \mathrm{NF}, \mathrm{THF} ; \mathbf{1 0 0} \%$. f) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py} ; 99.5 \%$ g) THF; $\mathrm{AcOH}, \mathrm{Zn} ; 10 \%$.

The mixture 11/11 a was epoxidized with 3 -chloroperbenzoic acid to give 12/12a in 95% yield, which was directly used for the next step of the synthesis. The dehydrohalogenation with sodium 1,1-dimethylpropoxide gave, after FC, the diastereoisomeric cyclohexane derivatives 13 with the exocyclic double bond at the $C(8)$ position [10] in an overall yield of 9% with respect to 10 . The epoxide mixture 13 was opened to aldehydes 14 with $\mathrm{MgBr} \cdot \mathrm{OEt}_{2}$ [11] [12] and without further purification reacted with (acetonylidene)(triphenyl)phosphorane to the α, β-unsaturated ketones $15(61.4 \%$ yield from 13). For characterization, the two diastereoisomers ($2 S, 6 R$)- and ($2 S, 6 S$)-15 were separated by FC, and the subsequent steps were also carried out separately for both diastereoisomers.

For the synthesis of $\mathbf{1}$, the separation of the diastereoisomeric compounds was performed only after conversion of the mixture 15 to the C_{18}-alcohol 16 as shown in Scheme 3. Protection of 15 with ethylene glycol in boiling benzene gave the ketal 17 in 99% yield [13]. After hydrolysis of the AcO group of 17 , alcohol 18 was treated with TsCl to give 19 in 92% yield with respect to 17 [14]. The reaction of 19 with NaCN yielded nitrile 20 which was treated with DIBAH to give aldehyde 21 (89% yield rel. to 19) [15]. The Horner-Emmons reaction with ethyl 2-(diethylphosphinyl)propanoate gave the α, β-unsaturated ester 22 which was reduced with DIBAH to the diastereoisomeric alcohols 16 (95% yield rel. to 21). The two diastereoisomers of 16 were separated by flash chromatography. The optically pure hydroxy ketal $(2 R, 6 R)-16$ was deprotected giving ($2 R, 6 R$)-23 in quantitative yield. Grignard reaction with vinylmagnesium bromide led to diol $(2 R, 6 R)-24$ in 60% yield [14] which was acetylated to the hydroxy acetate $(2 R, 6 R)-25$ (98% yield). Then, $(2 R, 6 R)-25$ was treated with $\mathrm{PPh}_{3} \cdot \mathrm{HBr}$ to give the phosphonium salt ($2 R, 6 R$)-3 in 95% yield [16] (Scheme 3).

In a two-phase reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $5 \% \mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$, the phosphonium salt ($2 R, 6 R$)-3 reacted with C_{10}-dial 2 directly to the deprotected crystalline carotenoid ($2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)-sarcinaxanthin ($\left(2 R, 6 R, 2^{\prime} R, 6^{\prime} R\right)$-1) in 60% yield. Recrystallization from (hexane/AcOEt) afforded (all-E,2R,6R, $2^{\prime} R, 6^{\prime} R$)-sarcinaxanthin ((all-E,2R,6R, $2^{\prime} R, 6^{\prime} R$)-1) (Scheme 4).

Scheme 3

a) $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 90 \%$. b) t - AmONa , THF/DMSO; 95%. c) $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$, THF. d) Toluene, 62% rel. to 13 . e) $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$, benzene; 96%. f) $10 \% \mathrm{KOH}$ in $\mathrm{MeOH} ; 95 \% . g$) $\mathrm{TsCl}, \mathrm{Py}, \mathrm{THF} ; 96 \%$. h) NaCN , DMF; 98%. i) DIBAH, hexane; $91 \%, j$ NaH; 96%. k) DIBAH, hexane; 95%. l) Separation. m) Pyridinium toluene-4-sulfonate, acetone, $\mathrm{H}_{2} \mathrm{O} ; 99 \%$. n) $\mathrm{Et}_{2} \mathrm{O} ; 60 \%$. o) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{THF}$; 98%. p) $\mathrm{PPh}_{3} \cdot \mathrm{HBr}, \mathrm{MeOH} ; 95 \%$.

Using ($2 R, 6 S$)-16 and applying the same pathway via $(2 R, 6 S)-\mathbf{3}$, also (all- $E, 2 R, 6 S$, $2^{\prime} R, 6^{\prime} S$)-2, 2^{\prime}-bis(4-hydroxy-3-methylbut-2-enyl)- γ, γ-carotene ((all- $\left.E, 2 R, 6 S, 2^{\prime} R, 6^{\prime} S\right)$-1) was synthesized.
3. Spectroscopic Studies and Conclusions. - The ${ }^{1} \mathrm{H}-$ NMR, UV/VIS, and MS data of (all- $E, 2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)- and (all- $E, 2 R, 6 S, 2^{\prime} R, 6^{\prime} S$)-1 are in full agreement with the data previously reported. Using $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, COSY, T-ROESY, and inverse HMQC experiments, all protons and C-atoms of the two diastereoisomers were unambiguously assigned (Table). Because of the different configuration of the ring of the two compounds, all ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-signals of the ring atoms of the two diastereoisomers are different. Especially the signals of the exocyclic methylidene group $\left(\mathrm{CH}_{2}(18)\right)$ are influenced. Since in the $(2 R, 6 R)$-configuration, the polyene chain is in close vicinity to the methylidene group, the two protons show significantly different signals.

The CD spectrum of (all-E, $2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)-1 (Fig.) with maxima and minima at $200(+), 205(-), 267.5(-), 332(+), 449(-), 466(+), 483(-)$ and $491(+) \mathrm{nm}$, when compared to the natural product $(267(-), 335(+) \mathrm{nm})$, finally establishes the (all$\left.E, 2 R, 6 R, 2^{\prime} R, 6^{\prime} R\right)$-configuration of the natural compound.

The authors are grateful to the Swiss National Science Foundation for financial support, to F. HoffmannLa Roche Ltd., Basel, for financial support and providing chemicals, and to Mrs. Kohler (F. Hoffmann-La Roche $L t d$., Basel) for measuring the CD spectra.

Table. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data (400 and 100.6 MHz , resp., CDCl_{3}) of ($2 \mathrm{R}, 6 \mathrm{R}, 2^{\prime} \mathrm{R}, 6^{\prime} \mathrm{R}$)- and ($2 \mathrm{R}, 6 \mathrm{~S}, 2^{\prime} \mathrm{R}, 6^{\prime} \mathrm{S}$)-1

	${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$ ppm],$J[\mathrm{~Hz}])$		${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta[\mathrm{ppm}])$	
	($2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)-1	($2 R, 6 S, 2^{\prime} R, 6^{\prime} S$)-1	($2 R, 6 R, 2^{\prime} R, 6^{\prime} R$)-1	($2 R, 6 S, 2^{\prime} R, 6^{\prime} S$)-1
C(1)	-	-	39.21	37.78
$\mathrm{CH}(2)$	$1.28(\mathrm{tm}, J=12.0)$	$1.50(\mathrm{tm}, J=11.2)$	48.43	42.83
$\mathrm{CH}_{2}(3)$	$\begin{aligned} & 1.18\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}\right) \\ & 1.71\left(m, \mathrm{H}_{\mathrm{eq}}\right) \end{aligned}$	$\begin{aligned} & 1.22\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}\right) \\ & 1.73\left(d q, J=12.8,4.0, \mathrm{H}_{\mathrm{eq}}\right) \end{aligned}$	28.86	28.28
$\mathrm{CH}_{2}(4)$	$\begin{aligned} & 2.03\left(t d, J=12.8,4.0, \mathrm{H}_{\mathrm{ax}}\right) \\ & 2.35\left(d q, J=12.8,1.0, \mathrm{H}_{\mathrm{eq}}\right) \end{aligned}$	2.17 (m)	36.30	31.40
C(5)		-	150.33	149.90
$\mathrm{CH}(6)$	$2.47(d, J=10.0)$	2.55 ($d, J=8.8$)	58.43	60.64
$\mathrm{CH}(7)$	$5.82(d d, J=15.6,10.0)$	5.98 ($d d, J=15.4,8.8$)	128.34	128.79
$\mathrm{CH}(8)$	$6.12(d, J=15.6)$	$6.14(d, J=15.4)$	137.51	136.09
C(9)	-	-	135.36	135.41
$\mathrm{CH}(10)$	$6.11(d, J=12.8)$	$6.11(d, J=12.8)$	130.63	130.82
$\mathrm{CH}(11)$	6.62 (t^{\prime} ', $J=13$)	6.61 (' ',,$J=12.8$)	124.87	124.90
$\mathrm{CH}(12)$	$6.34(d, J=14.8)$	$6.32(d, J=14.8)$	137.31	137.28
$\mathrm{C}(13)$	-	-	136.37	136.36
$\mathrm{CH}(14)$	$6.24(d, J=8.0)$	$6.26(d, J=11.4)$	132.40	132.42
$\mathrm{CH}(15)$	6.62 (t ', $J=8.0$)	6.62 (t ', $J=11$)	129.95	130.11
Me(16)	0.95 (s)	0.91 (s)	27.62	27.21
$\mathrm{Me}(17)$	0.73 (s)	0.84 (s)	15.21	22.36
$\mathrm{CH}_{2}(18)$	4.53 (s, H cis to $\mathrm{C}(6)$) $4.76(s, \mathrm{H}$ trans to $\mathrm{C}(6))$	4.64 (s, H cis to $\mathrm{C}(6)$) 4.67 (s, H trans to $\mathrm{C}(6)$)	108.09	108.56
Me (19)	1.97 (s)	1.92 (s)	13.16	12.78
$\mathrm{Me}(20)$	1.96 (s)	1.96 (s)	12.78	13.10
$\mathrm{CH}_{2}\left(1^{\prime \prime}\right)$	$\begin{aligned} & 1.71(m) \\ & 2.24(d d, J=14.7,5.4) \end{aligned}$	$\begin{aligned} & 1.75(d m, J=4.1) \\ & 2.21(\mathrm{~m}) \end{aligned}$	28.41	27.81
$\mathrm{CH}\left(2^{\prime \prime}\right)$	$5.42(\mathrm{tm}, \mathrm{J}=6.8)$	$5.43(\mathrm{tm}, J=6.3)$	126.11	125.91
$\mathrm{C}\left(3^{\prime \prime}\right)$	-	-	135.22	135.19
$\mathrm{CH}_{2}\left(4^{\prime \prime}\right)$	4.02 (s)	4.01 (s)	69.04	68.90
$\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)$	1.66 (s)	1.65 (s)	13.79	13.81
OH	1.58 (br. s)	1.59 (br. s)		

Experimental Part

1. General. All experiments were carried out under N_{2} or Ar. Solvents were distilled or purchased in HPLC quality. Most reactions were worked up according to the following procedure ($=$ usual workup): Extraction with ($t-\mathrm{Bu}$) OMe or AcOEt, followed by washing with sat. aq. NaHCO_{3} soln. and brine. The combined aq. phase was re-extracted, the combined org. phase dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent evaporated under reduced pressure. TLC: silica gel KG $60 F_{254}$ (Merck). FC: silica gel 60 (Baker, $0.040-0.063 \mathrm{~mm}$). M.p.: Büchi 510 ; not corrected. UV Spectra: Perkin-Elmer 554; $\lambda_{\text {max }}$ in nm. IR Spectra: Perkin-Elmer 782 spectrometer, v in cm^{-1}. ${ }^{1} \mathrm{H}$ - and ${ }^{13}$ C-NMR Spectra: Bruker AC 300 (300 and 75.5 MHz , resp.), Bruker $A M 400(400$ and 100.6 MHz , resp.); in CDCl_{3}; chemical shift δ in ppm rel. to SiMe_{4} using $\mathrm{CDCl}_{3}(\delta=7.27$ as reference, J in Hz). Mass spectra: Varian MAT CH-7A; m / z (rel. intensity in \%), ionization energy 70 eV .
2. ($1 \mathrm{R}, 3 \mathrm{~S}$)-1,2,2-Trimethylcyclopentane-1,3-dimethanol (5). To a soln. of (+)-camphoric acid (50 g , 250 mmol ; 4) in THF (500 ml), $\mathrm{NaBH}_{4}(36.5 \mathrm{~g}, 970 \mathrm{mmol})$ was slowly added at -10°. The white slurry was stirred for 1 h , and then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(150 \mathrm{ml}, 580 \mathrm{mmol})$ was added dropwise. After 1 h , the slurry was poured onto ice $/ \mathrm{H}_{2} \mathrm{O}$ and the white residue carefully dissolved with $\mathrm{H}_{2} \mathrm{O}$ and the slurry then poured onto ice $/ \mathrm{H}_{2} \mathrm{O}$. The mixture was worked up as usual. FC (hexane/AcOEt $65: 35$) and subsequent crystallization (AcOEt/hexane) afforded $39.94 \mathrm{~g}(94 \%)$ of 5 . M.p. $131.5-133^{\circ}$. IR (K Br): $3621 s, 2941 s, 2878 s, 1464 m, 1372 m, 1020 s .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \quad 0.79(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(2)) ; \quad 1.01(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(1)) ; \quad 1.02(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(2)) ; \quad 1.36\left(\mathrm{~m}, \mathrm{H}_{\mathrm{e} \times \mathrm{e}_{0}}-\mathrm{C}(5), \quad \mathrm{H}_{\text {exo }}-\mathrm{C}(4)\right)$;

Figure. CD Spectra of (all-E,2R, $\left.6 \mathrm{R}, 2^{\prime} \mathrm{R}, 6^{\prime} \mathrm{R}\right)-1$ at $-180^{\circ}(-)$ and at $20^{\circ}(\cdots)$
$1.60(d t, J=12.5,6.0, \mathrm{H}-\mathrm{C}(3)) ; 1.95\left(m, \mathrm{H}_{\text {end }}-\mathrm{C}(5)\right) ; 2.04\left(m, \mathrm{H}_{\text {endo }}-\mathrm{C}(4)\right) ; 3.47\left(d, J=11,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(1)\right)$; $3.51\left(d d, J=10.2,8.1,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(3)\right) ; 3.58\left(d, J=11,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(1)\right) ; 3.73\left(d d, J=10.2,5.5,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(3)\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 18.49(\mathrm{Me}-\mathrm{C}(1)) ; 20.14(\mathrm{Me}-\mathrm{C}(2)) ; 24.18(\mathrm{Me}-\mathrm{C}(2)) ; 25.53(\mathrm{C}(5)) ; 33.74(\mathrm{C}(4))$; $43.96(\mathrm{C}(2)) ; 48.80(\mathrm{C}(1)) ; 50.49(\mathrm{C}(3)) ; 64.90\left(\mathrm{CH}_{2}-\mathrm{C}(3)\right) ; 69.15\left(\mathrm{CH}_{2}-\mathrm{C}(1)\right) . \mathrm{MS}: 154\left(7,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 139(64)$, 123(100), 109 (24), $95(23), 85(45), 81$ (66), $69(56), 55(41), 43(63)$.
3. ($/ \mathrm{R}, 3 \mathrm{~S}$)-3-\{/(tert-Butyl)dimethylsilyloxy/methyl $\}-1,2,2-$ trimethylcyclopentane-1-methanol (6). At 0°, $5(74.6 \mathrm{~g}, 434 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ and $(t-\mathrm{Bu}) \mathrm{Me}_{2} \mathrm{SiCl}(71.84 \mathrm{~g}, 477 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ was added dropwise within $11 / 2 \mathrm{~h}$. The mixture was worked up as usual. FC (hexane/AcOEt 94:6) gave 104.84 g (83%) of 6 . IR $\left(\mathrm{CDCl}_{3}\right): 3630 s, 2947 s, 2928 s, 2859 s, 1470 m, 1372 m, 1104 s, 837 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $0.05\left(s, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.79(s, \mathrm{Me}-\mathrm{C}(2)) ; 0.90(s, t-\mathrm{Bu}) ; 1.00(s, \mathrm{Me}-\mathrm{C}(1)) ; 1.01(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(2)) ; 1.36\left(\mathrm{~m}, \mathrm{H}_{e x} .-\mathrm{C}(5)\right)$; $1.40\left(m, \mathrm{H}_{e x o^{\circ}}-\mathrm{C}(4)\right) ; \quad 1.49(\mathrm{br} . \quad s, \quad \mathrm{OH}) ; \quad 1.57(d t, J=12.5, \quad 6.0, \quad \mathrm{H}-\mathrm{C}(3)) ; \quad 1.87\left(m, \mathrm{H}_{\text {endo }}-\mathrm{C}(5)\right) ; \quad 2.08$ $\left(m, \mathrm{H}_{\text {endo },}-\mathrm{C}(4)\right) ; 3.47\left(d, J=11,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(1)\right) ; 3.50\left(d d, J=10.2,8.1,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(3)\right) ; 3.57(d, J=11,1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{C}(1)\right) ; \quad 3.66\left(d d, J=10.2, \quad 5.5, \quad 1 \mathrm{H}, \quad \mathrm{CH}_{2}-\mathrm{C}(3)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right):-5.40\left(\mathrm{Me}_{2} \mathrm{Si}\right)$; $18.26\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 18.35(\mathrm{Me}-\mathrm{C}(1)) ; 20.40(\mathrm{Me}-\mathrm{C}(2)) ; 24.40(\mathrm{Me}-\mathrm{C}(2)) ; 25.29(\mathrm{C}(5)) ; 25.94\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 33.68(\mathrm{C}(4))$; $43.86(\mathrm{C}(2)) ; 48.90(\mathrm{C}(1)) ; 50.10(\mathrm{C}(3)) ; 64.69\left(\mathrm{CH}_{2}-\mathrm{C}(3) ; 69.31\left(\mathrm{CH}_{2}-\mathrm{C}(1)\right) . \mathrm{MS}: 271\left(1,[\mathrm{M}-\mathrm{Me}]^{+}\right), 229(6)\right.$, 211 (7), 199 (5), $155(5), 137(100), 105(75), 95(67), 89(34), 81(61), 75(86)$.
4. ($1 \mathrm{R}, 3 \mathrm{~S})-3-\{/ /$ tert-Butyl)dimethylsilyloxy $/$ methyl $\}-1,2,2$-trimethylcyclopentane-1-carbaldehyde (7). At $-78^{\circ},(\mathrm{COCl})_{2}(31.9 \mathrm{ml}, 371 \mathrm{mmol})$ and DMSO $(62.3 \mathrm{ml}, 878 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(450 \mathrm{ml})$ and stirred for 30 min . Afterwards, $6(96.9 \mathrm{~g}, 338 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ was added and the soln. stirred for 1 h . Then, $\mathrm{Et}_{3} \mathrm{~N}(165 \mathrm{ml}, 1.18 \mathrm{~mol})$ was added and the soln. stirred for 20 min , allowed to warm up to r.t., and then stirred for 1 additional h . Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. was added to the white slurry and the mixture worked up as usual. The crude 7 was used without further purification.
5. (1S,3S)-3-\{/(tert-Butyl)dimethylsilyloxy $/$ methyl $\}-1,2,2$-trimethyl-1-vinylcyclopentane (8). A soln. of $\mathrm{MePPh}_{3} \mathrm{Br}(190 \mathrm{~g}, 540 \mathrm{mmol})$ and $\mathrm{BuLi}(1.6 \mathrm{~m}$ in hexane, $355 \mathrm{ml}, 560 \mathrm{mmol})$ in THF (600 ml) was stirred for 45 min . Then a soln. of $7(106.3 \mathrm{~g}, 338 \mathrm{mmol})$ in THF (200 ml) was added at such a rate that the temp. did not exceed 25°. After 20 min , the soln. was worked up as usual. FC (hexane/AcOEt $9: 1$) afforded $90.05 \mathrm{~g}(94.5 \%)$ of 8 . IR $\left(\mathrm{CDCl}_{3}\right): 2920 s, 2885 s, 1636 m, 1470 s, 1461 s 1388 m, 1370 \mathrm{~m}, 1251 s, 1104 \mathrm{~s}, 835 \mathrm{vs} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $0.05\left(s, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.79(s, \mathrm{Me}-\mathrm{C}(2)) ; 0.91(s, t-\mathrm{Bu}) ; 0.93(s, \mathrm{Me}-\mathrm{C}(1)) ; 0.98(s, \mathrm{Me}-\mathrm{C}(2)) ; 1.31\left(\mathrm{~m}, \mathrm{H}_{\text {exo }}-\mathrm{C}(5)\right)$; $1.39\left(m, \mathrm{H}_{e x 0}-\mathrm{C}(4)\right) ; 1.57(d t, J=12.5,6.0, \mathrm{H}-\mathrm{C}(1)) ; 1.91\left(\mathrm{~m}, \mathrm{H}_{e \mathrm{end}},-\mathrm{C}(4), \mathrm{H}_{e n d o}-\mathrm{C}(5)\right) ; 3.51(d d, J=10.2$, $\left.8.1,1 \mathrm{H}, \mathrm{Me}-\mathrm{CH}_{2}\right) ; 3.67\left(d d, J=10.2,5.5,1 \mathrm{H}, \mathrm{Me}-\mathrm{CH}_{2}\right) ; 5.04\left(d, J=17.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, cis to $\left.\mathrm{C}(1)\right)$; $5.11\left(d, J=10.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, trans to $\left.\mathrm{C}(1)\right) ; 5.89\left(d d, J=17.4,10.8, \mathrm{CH}_{2}=\mathrm{CH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right):-5.37\left(\mathrm{Me}_{2} \mathrm{Si}\right) ; 18.25\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 18.40(\mathrm{Me}-\mathrm{C}(1)) ; 22.29(\mathrm{Me}-\mathrm{C}(2)) ; 22.69(\mathrm{Me}-\mathrm{C}(2)) ; 25.15(\mathrm{C}(5))$; $25.95\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 34.41(\mathrm{C}(4)) ; 44.65(\mathrm{C}(2)) ; 49.03(\mathrm{C}(3)) ; 51.06(\mathrm{C}(1)) ; 64.72\left(\mathrm{CH}_{2}-\mathrm{C}(3)\right) ; 111.78\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$; $144.97\left(\mathrm{CH}_{2}=\mathrm{CH}\right) . \mathrm{MS}: 267\left(4,[M-\mathrm{Me}]^{+}\right), 225(100), 195(10), 183(83), 153(30), 149(51), 115(28), 107(47)$, 89(58), 75 (86).
6. (1S,3S)-2,2,3-Trimethyl-3-vinylcyclopentane-1-methanol (9). At r.t., 8 ($90 \mathrm{~g}, 319 \mathrm{mmol}$) was dissolved in THF (650 ml), and $\mathrm{Bu}_{4} \mathrm{NF}(119.8 \mathrm{~g}, 382.8 \mathrm{mmol})$ was added at once. The soln. was stirred for 4 h and diluted with $\mathrm{H}_{2} \mathrm{O}$. The org. phase was extracted with $\mathrm{H}_{2} \mathrm{O}(7 \times)$ and then worked up as usual. FC (hexane/AcOEt 65:35) afforded $53.60 \mathrm{~g}(100 \%)$ of 9 . IR $\left(\mathrm{CDCl}_{3}\right): 3320 \mathrm{~s}, 2961 \mathrm{~s}, 2885 \mathrm{~s}, 1636 \mathrm{~m}, 1467 \mathrm{~m}, 1370 \mathrm{~s}, 1020 \mathrm{~s}, 920 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad 0.67(s, \mathrm{Me}-\mathrm{C}(2)) ; \quad 0.91(s, \mathrm{Me}-\mathrm{C}(3)) ; \quad 0.96(s, \mathrm{Me}-\mathrm{C}(2)) ; \quad 1.31\left(m, \mathrm{H}_{\text {exa }},-\mathrm{C}(4)\right)$; $1.41\left(m, \mathrm{H}_{e x o^{\prime}}-\mathrm{C}(5)\right) ; \quad 1.65$ (br. $\left.s, \mathrm{OH}\right) ; \quad 1.89\left(m, \mathrm{H}_{e n d o^{\prime}}-\mathrm{C}(4)\right) ; \quad 1.97\left(m, \mathrm{H}_{\text {end } o^{\prime}}-\mathrm{C}(5)\right) ; \quad 2.10(m, \mathrm{H}-\mathrm{C}(1))$; $3.51\left(d d, J=10.2,8.1,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}\right) ; 3.72\left(d d, J=10.2,5.5,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}\right) ; 4.92\left(d, J=17.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, cis to $\mathrm{C}(3)) ; 4.98\left(d, J=10.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, trans to $\left.\mathrm{C}(3)\right) ; 5.86\left(d d, J=17.4,10.8, \mathrm{CH}_{2}=\mathrm{CH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100.61 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad 19.56(\mathrm{Me}-\mathrm{C}(3)) ; \quad 22.20(\mathrm{Me}-\mathrm{C}(2)) ; \quad 22.47(\mathrm{Me}-\mathrm{C}(2)) ; \quad 25.43(\mathrm{C}(4)) ; \quad 34.40(\mathrm{C}(5)) ;$ $44.70(\mathrm{C}(2)) ; 49.40(\mathrm{C}(1)) ; 50.91(\mathrm{C}(3)) ; 65.33\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 112.07\left(\mathrm{CH}_{2}=\mathrm{CH}\right) ; 144.61\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$. MS: $168\left(1, \mathrm{M}^{+}\right)$, 153(11), 135(15), 107(30), $95(32), 82(40), 68(69), 55(19), 41(37), 28(21), 18(100)$.
7. (IS,3S)-2,2,3-Trimethyl-3-vinylcyclopentane-1-methyl Acetate (10). To a soln. of 9 ($53.6 \mathrm{~g}, 319 \mathrm{mmol}$) in pyridine/THF 3:5 $(400 \mathrm{ml}), \mathrm{Ac}_{2} \mathrm{O}(60.1 \mathrm{ml}, 460 \mathrm{mmol})$ was added. The soln. was stirred overnight and worked up as usual. Purification by FC (hexane/AcOEt $85: 15)$ gave $66.65 \mathrm{~g}(99.5 \%)$ of $\mathbf{1 0}$. IR $\left(\mathrm{CDCl}_{3}\right): 3082 w, 2978 s, 2882 s$, $1739 s, 1639 w, 1468 m, 1394 m, 1370 \mathrm{~m}, 1280 \mathrm{~s}$, $1035 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.69(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(2)$); $0.91(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(3)) ; \quad 0.97(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(2)) ; \quad 1.34\left(\mathrm{~m}, \mathrm{H}_{\text {exo }}-\mathrm{C}(4)\right) ; \quad 1.41\left(\mathrm{~m}, \mathrm{H}_{\text {exx }}-\mathrm{C}(5)\right) ; \quad 1.92\left(\mathrm{~m}, \mathrm{H}_{\text {end }}-\mathrm{C}(4)\right.$, $\left.\mathrm{H}_{\text {endo }}-\mathrm{C}(5)\right) ; 2.03(\mathrm{~s}, \mathrm{Ac}) ; 2.22(m, \mathrm{H}-\mathrm{C}(1)) ; 4.00\left(d d, J=10.2,8.1,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}\right) ; 4.04(d d, J=10.2,5.5,1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{OH}\right) ; 4.92\left(d, J=17.5,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, cis to $\left.\mathrm{C}(3)\right) ; 4.99(d, J=17.5,1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$, trans to $\mathrm{C}(3))$; $5.87\left(d d, J=17.5, \quad 10.8, \quad \mathrm{CH}_{2}=\mathrm{CH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(75.5 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad 19.52(\mathrm{Me}-\mathrm{C}(3)) ; 21.00(\mathrm{MeCO}) ;$ $22.24(\mathrm{Me}-\mathrm{C}(2)) ; \quad 22.25(\mathrm{Me}-\mathrm{C}(2)) ; \quad 25.21(\mathrm{C}(4)) ; \quad 34.31(\mathrm{C}(5)) ; \quad 44.81(\mathrm{C}(2)) ; \quad 45.57(\mathrm{C}(1)) ; \quad 50.86(\mathrm{C}(3))$; $66.71\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 112.23\left(\mathrm{CH}_{2}=\mathrm{CH}\right) ; 144.41\left(\mathrm{CH}_{2}=\mathrm{CH}\right) ; 171.17(\mathrm{MeCO}) . \mathrm{MS}: 210\left(6, M^{+}\right), 189(16), 147(54)$, 135(47), 121 (24), 107 (100), $94(66), 82(53), 68(71), 43(63)$.
8. (1S,4R)-4-(Bromomethyl)-2,2-dimethyl-3-methylidenecyclohexane-1-methyl Acetate (11). At $70^{\circ}, 10(66 \mathrm{~g}$, $314 \mathrm{mmol})$ was dissolved in THF (1000 ml), and TBCO ($155 \mathrm{~g}, 375 \mathrm{mmol}$, prepared from 2,4,6-tribromophenol and Br_{2} in $\left.\mathrm{AcOH}[17]\right)$ was added at once. The brown soln. was stirred for 1 h and then cooled to 30°. Afterwards, $\mathrm{AcOH}(60 \mathrm{ml}, 1.03 \mathrm{~mol})$ and $\mathrm{Zn}(61 \mathrm{~g}, 930 \mathrm{mmol})$ were added, and the slurry was stirred for 45 min at 65°. The slurry was filtered and the org. phase worked up as usual. FC (hexane/AcOEt 99:1) afforded $33 \mathrm{~g}(\mathbf{3 4 \%}$) of 11/11 a
 $213(22), 185(9), 149(100), 135(69), 121(45), 107(84), 93(66), 79(42), 67(24), 55(23)$.
9. ($3 \mathrm{R}, 5 \mathrm{~S}, 8 \mathrm{R}$)-and ($3 \mathrm{~S}, 5 \mathrm{~S}, 8 \mathrm{R}$)-8-Bromomethyl-4,4-dimethyl-1-oxaspiro[2.5]octan-5-methyl Acetate (12). At r.t., $11 / 11 \mathrm{a}(33 \mathrm{~g}, 110 \mathrm{mmol})$ and $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}(70 \%, 36.5 \mathrm{~g}, 145 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$. The soln. was stirred for 3 h diluted with hexane and the precipitated acid filtered. The org. phase was worked up as usual, affording $29.92 \mathrm{~g}\left(90 \%\right.$) of $\mathbf{1 2 / 1 2 a}$ after FC (hexane/AcOEt 92:8). IR $\left(\mathrm{CDCl}_{3}\right): 3062 w, 2960 s, 2864 s$, $\left.1735 \mathrm{vs}, \quad 1470 \mathrm{~s}, 1390 \mathrm{~s}, 1370 \mathrm{~s}, 1245 \mathrm{v} s, 1061 \mathrm{~s}, 900 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.82(s, \mathrm{Me}(16))$;

[^1]$0.97(s, \mathrm{Me}(17)) ; 1.31\left(q d, J=12.4,4, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 1.43\left(q d, J=13.3,3.7, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.75(d d d, J=16.1,8.0,4$, $\mathrm{H}-\mathrm{C}(2)) ; \quad 1.83\left(q d, J=13.3, \quad 3.7, \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; \quad 1.93\left(q d, J=12.4, \quad 3.2, \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; \quad 2.03(s, \mathrm{Ac}) ;$ $2.39(d d d d, J=16.3, \quad 7.0, \quad 5.8, \quad 1.2, \quad \mathrm{H}-\mathrm{C}(5)) ; \quad 2.84(d, J=3.2, \quad \mathrm{H}-\mathrm{C}(7)) ; \quad 2.89(d, J=3.2, \quad \mathrm{H}-\mathrm{C}(7))$; $2.94\left(d d, J=10.3,5.8,1 \mathrm{H}, \mathrm{C} H_{2}-\mathrm{C}(5)\right) ; 3.13\left(d d, J=10.3,7.0,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}(5)\right) ; 3.82(d d, J=11.0,8.1,1 \mathrm{H}$, $\left.\left.\mathrm{CH}_{2} \mathrm{OAc}\right) ; \quad 4.16\left(d d, J=11.0, \quad 3.9, \quad 1 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{OAc}\right) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 19.94(\mathrm{C}(17))$; $20.67(\mathrm{C}(16)) ; 20.95(\mathrm{MeCO}) ; 25.78(\mathrm{C}(3)) ; 29.24(\mathrm{C}(4)) ; 32.56(\mathrm{C}(18)) ; 36.86(\mathrm{C}(1)) ; 39.10(\mathrm{C}(5)) ; 42.67(\mathrm{C}(2))$; $47.16(\mathrm{C}(7)) ; 63.89(\mathrm{C}(6)) ; 65.92\left(\mathrm{CH}_{2} \mathrm{OAc}\right) ; 171.04(\mathrm{MeCO}) . \mathrm{MS}: 304\left(1, \mathrm{M}^{+}\right), 250(4), 226(54), 216(8), 201(10)$, $165(81), 151(44), 133(97), 121(100), 107(56), 93(69), 79(56), 67(39), 55(46), 43(87)$.
10. (3R,5S)-and (3S,5S)-4,4-Dimethyl-8-methylidene-1-oxaspiro[2.5]octan-5-methyl Acetate (13). A slurry of $\mathrm{NaH}(19 \mathrm{~g}, 475 \mathrm{mmol})$ and $\mathrm{MeCH}_{2} \mathrm{C}(\mathrm{Me})_{2} \mathrm{OH}(61 \mathrm{ml}, 570 \mathrm{mmol})$ in THF $(150 \mathrm{ml})$ was stirred for 1 h . Then, $\mathbf{1 2} / \mathbf{1 2} \mathbf{a}(29.5 \mathrm{~g}, 95 \mathrm{mmol})$ in THF (100 ml) was added at once. The slurry was stirred for 10 min , and then, DMSO (120 ml) was added and the mixture stirred at 70° for $11 / 2 \mathrm{~h}$. The slurry was allowed to cool to r.t., the residue filtered off, and the soln. worked up as usual. The light brown oil was dissolved with THF (100 ml), and then, a soln. of $\mathrm{Ac}_{2} \mathrm{O}(35 \mathrm{ml})$ in pyridine $(50 \mathrm{ml})$ was added and stirred overnight. The mixture was worked up as usual, giving $5.6 \mathrm{~g}(8 \%$ rel. to 10$)$ of 13 after FC (hexane/AcOEt $92: 8$). IR $\left(\mathrm{CDCl}_{3}\right) ; 3080 \mathrm{w}, 2978 s, 2880 \mathrm{~s}, 1741 \mathrm{vs}, 1640 \mathrm{~m}$, $\left.1468 \mathrm{~m}, 1390 \mathrm{~m}, 1367 \mathrm{~s}, 1234 \mathrm{vs}, 1030 \mathrm{~s}, 910 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.86(s, \mathrm{Me}(16)$); $0.91(s, \mathrm{Me}(17))$; $1.46\left(q d, J=13.3,3.7, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.84\left(m, \mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.05(\mathrm{~s}, \mathrm{Ac}) ; 2.15(t d t, J=13.3,4.8,1.5$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; \quad 2.45(d, J=5.5, \quad \mathrm{H}-\mathrm{C}(7)) ; \quad 2.50\left(q d, J=12.4, \quad 3.2, \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; \quad 2.91(d, J=3.2, \quad \mathrm{H}-\mathrm{C}(7))$; $3.89\left(d d, J=11.0,8.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.20\left(d d, J=11.0,5.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.74$ (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right)$; 4.95 (${ }^{\prime}$ ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\left.\left.\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 18.12(\mathrm{C}(17)) ; 20.98(\mathrm{MeCO}) ; 21.27(\mathrm{C}(16))$; $25.95(\mathrm{C}(3)) ; 33.18(\mathrm{C}(4)) ; 36.96(\mathrm{C}(1)) ; 45.78(\mathrm{C}(2)) ; 52.71(\mathrm{C}(7)) ; 64.78(\mathrm{C}(6)) ; 65.35\left(\mathrm{CH}_{2} \mathrm{OAc}\right) ; 107.08(\mathrm{C}(18))$; $145.61(\mathrm{C}(5)) ; 171.09(\mathrm{MeCO})$, MS: $181\left(1,[M-43]^{+}\right), 250(4), 226(54), 216(8), 174(3), 164(6), 149(58), 135(15)$, 121 (33), 112 (19), $105(18), 91(26), 79(16), 43(30), 18(100)$.
11. ($1 \mathrm{R}, 3 \mathrm{~S}$)- and ($1 \mathrm{~S}, 3 \mathrm{~S})-3-/($ Acetoxy $)$ methyl $]-2,2$-dimethyl-6-methylidenecyclohexane-1-carbaldehyde (14). $\mathrm{At}-5^{\circ}, 13(6.54 \mathrm{~g}, 29 \mathrm{mmol})$ was dissolved in abs. $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and powdered $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(15 \mathrm{~g}, 58 \mathrm{mmol})$ added in portions. The mixture was allowed to warm to r.t., and after 4,7 , and 20 h , additional $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ ($3 \times 7.5 \mathrm{~g}$) was added as a fine powder. The slurry was carefully diluted with $\mathrm{H}_{2} \mathrm{O}$ and worked up as usual. The crude aldehyde 14 was used without further purification.
12. $4-\{(1 \mathrm{R}, 3 \mathrm{~S})-$ and (1S,3S)-3-[(Acetoxy)methyl $]-2,2-$ dimethyl-6-methylidenecyclohexyl $\}$ but-3-en-2-one (15). At $-110^{\circ}, 14(8 \mathrm{~g}, 29 \mathrm{mmol})$ and (acetylmethylidene)triphenylphosphorane ($18.4,58 \mathrm{mmol}$) were dissolved in toluene (90 ml) and the soln. was refluxed overnight. The soln. was allowed to cool to r.t. and worked up as usual. Purification by FC (hexane/AcOEt 86:14) afforded 3 g of 13 and 2.91 g of $\mathbf{1 5}$. The epoxide 13 was once again subjected to Exper. 10 and 11 , finally affording $4.7 \mathrm{~g}(61.4 \%)$ of $\mathbf{1 5}$. For spectroscopic data the two diastereoisomeric compounds were separated by FC (hexane/AcOEt 9:1).

Data of (2S, 6R)-15 ${ }^{4}$): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.79(s, \mathrm{Me}(16)) ; 0.97(\mathrm{~s}, \mathrm{Me}(17)) ; 1.37(q d, J=13.3$, $\left.4.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.66(d d d, J=16.1,8.1,4.0, \mathrm{H}-\mathrm{C}(2)) ; 1.85\left(d q, J=12.4,4.0, \mathrm{H}_{\mathrm{ea}}-\mathrm{C}(3)\right) ; 2.05(s, \mathrm{Ac})$; $2.10\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.30(s, \mathrm{Me}(19)) ; 2.42\left(q d, J=12.4,3.2, \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.60(d, J=10.0$, $\mathrm{H}-\mathrm{C}(6)) ; 3.83\left(d d, J=11.0,8.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.28\left(d d, J=11.0,4.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.48$ (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)) ; 4.85$ (${ }^{\prime} s, \mathrm{H}-\mathrm{C}(18)$ trans to $\left.\mathrm{C}(6)\right) ; 6.12(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 6.90(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left.\left.100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 15.84(\mathrm{C}(17)) ; 21.00(\mathrm{MeCO}) ; 26.91(\mathrm{C}(3)) ; 27.38(\mathrm{C}(16)) ; 27.61(\mathrm{C}(19)) ; 35.49(\mathrm{C}(4))$; $37.90(\mathrm{C}(1)) ; \quad 46.46(\mathrm{C}(2)) ; \quad 57.52(\mathrm{C}(6)) ; \quad 65.57\left(\mathrm{CH}_{2} \mathrm{OAc}\right) ; \quad 109.44(\mathrm{C}(18)) ; \quad 134.03(\mathrm{C}(8)) ; \quad 145.71(\mathrm{C}(7)) ;$ $147.73(\mathrm{C}(5)) ; 171.09(\mathrm{MeCO}) ; 197.86(\mathrm{C}(9)) . \mathrm{MS}: 264\left(28, M^{+}\right), 224(16), 204(8), 189(23), 176(14), 161(71)$, $149(95), 135(12), 121(56), 105(24), 93(21), 81(26), 69(16), 43(75), 18(100)$.

Data of (2S,6S)-15 ${ }^{4}$: : $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.90(s, \mathrm{Me}(16)) ; \quad 0.99(s, \mathrm{Me}(17)) ; \quad 1.38$ $\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.84\left(m, \mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.06(\mathrm{~s}, \mathrm{Ac}) ; 2.23(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 2.25(s, \mathrm{Me}(19)) ; 2.59(d, J=9.0$, $\mathrm{H}-\mathrm{C}(6)) ; 3.86\left(d d, J=11.0,8.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.23\left(d d, J=11.0,4.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.72$ ('s', $\mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)) ; 4.81$ (${ }^{s} s, \mathrm{H}-\mathrm{C}(18)$ trans to $\left.\mathrm{C}(6)\right) ; 6.13(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 7.04(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}: 21.00(\mathrm{MeCO}) ; 22.65(\mathrm{C}(17)) ; 26.44(\mathrm{C}(3)) ; 27.16(\mathrm{C}(16)) ; 27.52(\mathrm{C}(19)) ; 30.68(\mathrm{C}(4))$; $36.73(\mathrm{C}(1)) ; \quad 41.12(\mathrm{C}(2)) ; \quad 60.00(\mathrm{C}(6)) ; \quad 65.52\left(\mathrm{CH}_{2} \mathrm{OAc}\right) ; \quad 111.14(\mathrm{C}(18)) ; \quad 132.19(\mathrm{C}(8)) ; \quad 146.13(\mathrm{C}(7)) ;$ 146.85(C(5)); 171.18 (MeCO); 198.11 (C(9)).
13. (1S,3R)- and (1S,3S)-2,2-Dimethyl-3-/2-(2-methyl-1,3-dioxolan-2-yl)ethenyl]-4-methylidenecyclohexa-ne-1-methyl Acetate (17). To a soln. of $15(4.7 \mathrm{~g}, 17.8 \mathrm{mmol})$ in benzene $(120 \mathrm{ml}),\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(10 \mathrm{ml})$ and pyridinium toluene-4-sulfonate (15 mg) were added. The soln. was stirred at 80° for 24 h , allowed to cool to r.t. and worked up as usual. FC (hexane/AcOEt 9:1) gave $5.14 \mathrm{~g}(94 \%)$ of 17.

Data of (2S,6R)-174 $\left.):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.79(s, \mathrm{Me}(16)) ; 0.97(s, \operatorname{Me}(17)) ; 1.32(q d, J=13.3$, $\left.4.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.63(d d d, J=16.1,8.1,4.0, \mathrm{H}-\mathrm{C}(2)) ; 1.82\left(d q, J=12.4,4.0, \mathrm{H}_{e q}-\mathrm{C}(3)\right) ; 2.05(s, \mathrm{Ac})$;
$2.09\left(q d, J=12.4, \quad 4.0, \quad \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.30(\mathrm{~s}, \mathrm{Me}(19)) ; 2.39\left(q d, J=12.4, \quad 3.2, \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.42(d, J=10.0$, $\mathrm{H}-\mathrm{C}(6)) ; 3.78\left(d d, J=11.0,8.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 3.85,3.94\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.27(d d, J=11.0,4.0,1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OAc}$); 4.48 (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.78$ ($s s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $5.42(d, J=16, \mathrm{H}-\mathrm{C}(8))$; $\left.5.89(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 15.69(\mathrm{C}(17)) ; 21.00(\mathrm{MeCO}) ; 25.17(\mathrm{C}(19)) ;$ $27.07(\mathrm{C}(3)) ; \quad 27.40(\mathrm{C}(16)) ; \quad 35.58(\mathrm{C}(4)) ; \quad 37.48(\mathrm{C}(1)) ; \quad 46.60(\mathrm{C}(2)) ; \quad 56.97(\mathrm{C}(6)) ; \quad 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;$ $65.92\left(\mathrm{CH}_{2} \mathrm{OAc}\right) ; 107.27(\mathrm{C}(9)) ; 108.66(\mathrm{C}(18)) ; 128.72(\mathrm{C}(8)) ; 134.08(\mathrm{C}(7)) ; 149.02(\mathrm{C}(5)) ; 171.09(\mathrm{MeCO}) . \mathrm{MS}:$ $308\left(41, M^{+}\right), 292(100), 232(26), 170(15), 100(24), 87(39)$.

Data of (2S, 6 S$\left.\left.)-17^{4}\right): \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.85(s, \mathrm{Me}(16)) ; \quad 0.97(s, \mathrm{Me}(17)) ; \quad 1.38$ $\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.47(s, \mathrm{Me}(19)) ; 1.84\left(m, \mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.06(s, \mathrm{Ac}) ; 2.19(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 2.46(d, J=9.0$, $\mathrm{H}-\mathrm{C}(6)) ; 3.84,3.96\left(2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.86\left(d d, J=11.0,8.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.23(d d, J=11.0,4.0,1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OAc}\right) ; 4.62$ (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.71$ (s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\left.\mathrm{C}(6)\right) ; 5.42(d, J=16, \mathrm{H}-\mathrm{C}(8))$; $\left.6.05(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 21.02(\mathrm{MeCO}) ; 22.87(\mathrm{C}(17)) ; 25.02(\mathrm{C}(19))$; $26.53(\mathrm{C}(3)) ; \quad 26.94(\mathrm{C}(16)) ; \quad 30.65(\mathrm{C}(4)) ; \quad 36.22(\mathrm{C}(1)) ; \quad 40.98(\mathrm{C}(2)) ; \quad 59.11(\mathrm{C}(6)) ; \quad 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;$ $65.71\left(\mathrm{CH}_{2} \mathrm{OAc}\right) ; 107.37(\mathrm{C}(9)) ; 109.41(\mathrm{C}(18)) ; 129.59(\mathrm{C}(8)) ; 132.21(\mathrm{C}(7)) ; 148.58(\mathrm{C}(5)) ; 171.18(\mathrm{MeCO})$.
14. (IS,3R)- and (1S,3S)-2,2-Dimethyl-3-[2-(2-methyl-1,3-dioxolan-2-yl)ethenyl]-4-methylidenecyclohexa-ne-1-methanol (18). At r.t., $17(5.14 \mathrm{~g}, 16.7 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(60 \mathrm{ml})$ and $10 \% \mathrm{NaOH}$ in MeOH $(16.7 \mathrm{ml})$. The soln. was stirred for 2 h and worked up as usual. Purification by FC (hexane/AcOEt $85: 15$) gave $4.44 \mathrm{~g}(100 \%)$ of 18.

Data of ($2 \mathrm{~S}, 6 \mathrm{R} \boldsymbol{\mu}-18^{4}$): IR $\left(\mathrm{CDCl}_{3}\right): 3620 s, 3060 w, 2980 s, 2880 s, 1640 \mathrm{~m}, 1480 s, 1450 s, 1380 s, 1220 s .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}$): $0.65\left(s, \mathrm{Me}(16)\right.$); $0.94(s, \mathrm{Me}(17)) ; 1.27\left(q d, J=13.3,4.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right.$); $1.46(d d d, J=16.1$, 8.0, 4.0, H-C(2)); $1.48(s, \mathrm{Me}(19)) ; 1.96\left(d q, J=12.4,4.0, \mathrm{H}_{\mathrm{cq}}-\mathrm{C}(3)\right) ; 2.02\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right)$; 2.04 (br. $s, \mathrm{OH}) ; 2.39\left(q d, J=12.4,3.2, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.40(d, J=10.0, \mathrm{H}-\mathrm{C}(6)) ; 3.31(d d, J=11.0,10.0,1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right) ; 3.85\left(d d, \mathrm{~J}=11.0,4.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.86,3.96\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.47$ (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right)$; 4.78 ('s', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)) ; 5.41(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 5.88(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left.\left(75.5 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): 15.80(\mathrm{C}(17)) ; 25.16(\mathrm{C}(19)) ; 26.93(\mathrm{C}(3)) ; 27.49(\mathrm{C}(16)) ; 35.80(\mathrm{C}(4)) ; 37.49(\mathrm{C}(1))$; $50.23(\mathrm{C}(2)) ; 57.11(\mathrm{C}(6)) ; 63.83\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 107.33(\mathrm{C}(9)) ; 108.35(\mathrm{C}(18)) ; 129.03(\mathrm{C}(8))$; $133.78(\mathrm{C}(7)) ; 149.50(\mathrm{C}(5))$. MS: $266\left(43, M^{+}\right), 251(100), 232(6), 177(6), 165(15), 147(11), 133(13), 105(16)$, 100 (29), 87 (44).

Data of (2S,6S)-184): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.79(\mathrm{~s}, \mathrm{Me}(16)) ; \quad 0.91(\mathrm{~s}, \mathrm{Me}(17)) ; \quad 1.36$ $\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.46(m, \mathrm{H}-\mathrm{C}(2)) ; 1.47(\mathrm{~s}, \mathrm{Me}(19)) ; 1.81$ (br. $\left.s, \mathrm{OH}\right) ; 1.90\left(d q, J=13.3,4.3, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.20$ $(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 2.39(d, J=9.0 \mathrm{H}-\mathrm{C}(6)) ; 3.36\left(d d, J=11.0,10.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.80(d d, J=11.0,4.0,1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OH}$) ; 3.83, $3.92\left(2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$); 4.57 (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)$); 4.67 ($s \mathrm{~s}$ ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $\left.5.39(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 6.06(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 22.93(\mathrm{C}(17))$; $24.98(\mathrm{C}(19)) ; 26.27(\mathrm{C}(3)) ; 27.05(\mathrm{C}(16)) ; 30.83(\mathrm{C}(4)) ; 36.22(\mathrm{C}(1)) ; 44.46(\mathrm{C}(2)) ; 59.27(\mathrm{C}(6)) ; 63.56\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; 64.44($\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 107.39(\mathrm{C}(9)) ; 109.10(\mathrm{C}(18)) ; 129.96(\mathrm{C}(8)) ; 131.87(\mathrm{C}(7)) ; 149.02(\mathrm{C}(5))$.
15. (IS,3R)- and (IS,3S)-2,2-Dimethyl-3-[2-(2-methyl-1,3-dioxolan-2-yl)ethenyl]-4-methylidenecyclohexa-ne-1-methyl Tosylate (19). To a soln. of $18(3.51 \mathrm{~g}, 13.2 \mathrm{mmol})$ in pyridine (25 ml), $\mathrm{TsCl}(4.58 \mathrm{~g}, 23.8 \mathrm{mmol})$ was added. The mixture was stirred at 4° for 20 h , allowed to warm to r.t., and diluted with ($t-\mathrm{Bu}$)OMe. The soln. was extracted with sat. CuSO_{4} soln. until the aq. phase remained slightly blue. The aq. phase was re-extracted and worked up as usual. FC (hexane/AcOEt 9:1) afforded $5.31 \mathrm{~g}(95.4 \%)$ of 19.

Data of (2S,6R)-194): IR (CDCl ${ }_{3}$): 3065w, 2959s, 2880s, $1740 m, 1649 m, 1601 m, 1450 m, 1368 s, 1179 s, 1100 s$, $\left.1040 s, \quad 985 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.63(s, \mathrm{Me}(16)) ; 0.88(s, \mathrm{Me}(17)) ; \quad 1.25(q d, J=13.3, \quad 4.2$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.47(s, \mathrm{Me}(19)) ; 1.64(d d d, J=16.1,8.0,4.0, \quad \mathrm{H}-\mathrm{C}(2)) ; 1.81\left(d q, \quad J=12.4,4.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right)$; $2.00\left(q d, J=12.4, \quad 4.0, \quad \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; \quad 2.34\left(q d, J=12.4, \quad 3.2, \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; \quad 2.38(d, J=10.0, \quad \mathrm{H}-\mathrm{C}(6))$; $2.47\left(s, \mathrm{MeC}_{6} \mathrm{H}_{4}\right) ; 3.77\left(d d, J=11.0,10.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTs}\right) ; 3.86,3.92\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.22(d d, J=11.0,4.0$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTs}$); 4.49 (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.77$ (s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $5.42(d, J=16, \mathrm{H}-\mathrm{C}(8))$; $5.84(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) ; 7.36(d, J=8.1$, arom. H$) ; 7.78(d, J=8.1$, arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\left.\mathrm{CDCl}_{3}\right)^{4}\right): 15.82(\mathrm{C}(17)) ; 21.64\left(\mathrm{MeC}_{6} \mathrm{H}_{4}\right) ; 25.18(\mathrm{C}(19)) ; 26.62(\mathrm{C}(3)) ; 27.31(\mathrm{C}(16)) ; 35.27(\mathrm{C}(4)) ; 37.36(\mathrm{C}(1)) ;$ $46.80(\mathrm{C}(2)) ; 56.74(\mathrm{C}(6)) ; 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 71.91\left(\mathrm{CH}_{2} \mathrm{OTs}\right) ; 107.23(\mathrm{C}(9)) ; 109.02(\mathrm{C}(18)) ; 127.86$ (arom. C$)$; 128.32 (C(8)); 129.86 (arom. C); 133.14 (arom. C); 134.39 (C(7)); 144.74 (arom. C); 148.49 (C(5)). MS: 420 (21, M^{+}), 405(76), $233(31), 177(8), 161(12), 155(14), 133(11), 119(13), 105(14), 100(20), 91(49), 87(100), 43(78)$.

Data of (2S,6S)-194): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.78(\mathrm{~s}, \mathrm{Me}(16)) ; 0.88(\mathrm{~s}, \mathrm{Me}(17)) ; 1.28\left(\mathrm{~m}, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right)$; $1.43(s, 3 \mathrm{H}-\mathrm{C}(19)) ; \quad 1.81\left(m, \mathrm{H}-\mathrm{C}(2), \quad \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; \quad 2.13(m, 2 \quad \mathrm{H}-\mathrm{C}(4)) ; \quad 2.39(d, J=9.0, \quad \mathrm{H}-\mathrm{C}(6)) ;$ $2.47\left(s, \mathrm{MeC}_{6} \mathrm{H}_{4}\right) ; 3.84,3.95\left(2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.86\left(d d, J=11.0,10.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTs}\right) ; 4.20(d d, J=11.0,4.0$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTs}$); 4.62 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)$); 4.68 (' s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $5.41(d, J=16, \mathrm{H}-\mathrm{C}(8))$; $5.96\left(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)\right.$); $7.36\left(d, J=8.1\right.$ arom. H); $7.78\left(d, J=8.1\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 MHz ,
$\left.\left.\mathrm{CDCl}_{3}\right)^{4}\right): 21.54\left(\mathrm{MeC}_{6} \mathrm{H}_{4}\right) ; 22.81(\mathrm{C}(17)) ; 24.92(\mathrm{C}(19)) ; 25.93(\mathrm{C}(3)) ; 26.72(\mathrm{C}(16)) ; 30.24(\mathrm{C}(4)) ; 36.02(\mathrm{C}(1))$; $41.20(\mathrm{C}(2)) ; 58.83(\mathrm{C}(6)) ; 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 71.66\left(\mathrm{CH}_{2} \mathrm{OTs}\right) ; 107.17(\mathrm{C}(9)) ; 109.69(\mathrm{C}(18)) ; 127.75($ arom. C$) ;$ $129.00(\mathrm{C}(8)) ; 129.76$ (arom. C); 132.45 (C(7)); 133.02 (arom. C); 144.67 (arom. C); 148.58 (C(5)).
16. (1R,3R)-and (1R,3S)-2,2-Dimethyl-3-/2-(2-methyl-1,3-dioxolan-2-yl)ethenyl $]-4$-methylidenecyclohexa-ne-1-acetonitrile (20). At $80^{\circ}, 19(5.3 \mathrm{~g}, 12.5 \mathrm{mmol})$ and $\mathrm{NaCN}(1.84 \mathrm{~g}, 37.5 \mathrm{mmol})$ were dissolved in DMF (30 ml) and stirred overnight. The soln. was allowed to cool to r.t., diluted with ($t-\mathrm{Bu}$) OMe and worked up with sat. NaHCO_{3} soln. The further workup was carried out as usual. FC (hexane/AcOEt 9:1) gave $3.32 \mathrm{~g}(97 \%)$ of 20.

Data of ($2 \mathrm{R}, 6 \mathrm{R}$)-20 ${ }^{4}$): IR $\left(\mathrm{CDCl}_{3}\right): 3072 w, 2959 \mathrm{~s}, 2924 \mathrm{~s}, 2876 \mathrm{~s}, 2238 \mathrm{~m}, 1670 \mathrm{vs}, 1455 \mathrm{~m}, 1385 m .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left.\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.68(s, \mathrm{Me}(16)) ; 0.94(s, \mathrm{Me}(17)) ; 1.40\left(q d, J=13.3,4.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.48(s, \mathrm{Me}(19))$; $1.74(d d d, J=16.1,8.0,4.0, \mathrm{H}-\mathrm{C}(2)) ; 2.00\left(d q, J=12.4,4.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.08\left(d d, J=11.0,8.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right)$; $2.10\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.42\left(q d, J=12.4,3.2, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.43(d, J=10.0, \mathrm{H}-\mathrm{C}(6)) ; 3.86,3.92$ ($2 \mathrm{~m}, \mathrm{OCH} \mathrm{CH}_{2} \mathrm{O}$); $2.56\left(d d, J=11.0,3.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right.$); 4.53 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.82$ ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ trans to $\left.\mathrm{C}(6)) ; 5.46(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 5.89(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right)$: $14.68(\mathrm{C}(17)) ; 19.12\left(\mathrm{CH}_{2} \mathrm{CN}\right) ; 25.20(\mathrm{C}(19)) ; 27.26(\mathrm{C}(16)) ; 28.95(\mathrm{C}(3)) ; 35.49(\mathrm{C}(4)) ; 38.17(\mathrm{C}(1)) ; 44.85(\mathrm{C}(2))$; $56.54(\mathrm{C}(6)) ; 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 107.24(\mathrm{C}(9)) ; 109.42(\mathrm{C}(18)) ; 119.76(\mathrm{CN}) ; 128.42(\mathrm{C}(8)) ; 134.52(\mathrm{C}(7))$; $148.06(\mathrm{C}(5))$. MS: $260\left(100,[M-15]^{+}\right), 223(3), 188(3), 87(26), 28(32)$.

Data of ($2 \mathrm{R}, 6 \mathrm{~S}$)-204$\left.):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.76(\mathrm{~s}, \mathrm{Me}(16)) ; 0.86(\mathrm{~s}, \mathrm{Me}(17)) ; 1.34\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right)$; $1.38(s, \mathrm{Me}(19)) ; 1.84\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.04\left(d d, J=11.0,10.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right) ; 2.16(m, 2 \mathrm{H}-\mathrm{C}(4))$; $2.43(d, J=9.0, \mathrm{H}-\mathrm{C}(6)) ; 2.50\left(d d, J=11.0,4.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right) ; 3.78,3.88\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.58$ (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)) ; 4.66$ (s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)) ; 5.38(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 5.94(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7))$. $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 18.41\left(\mathrm{CH}_{2} \mathrm{CN}\right) ; 21.64(\mathrm{C}(17)) ; 24.84(\mathrm{C}(19)) ; 26.84(\mathrm{C}(16)) ; 28.20(\mathrm{C}(3))$; $30.35(\mathrm{C}(4)) ; \quad 36.63(\mathrm{C}(1)) ; \quad 39.14(\mathrm{C}(2)) ; \quad 58.22(\mathrm{C}(6)) ; \quad 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; \quad 107.02(\mathrm{C}(9)) ; \quad 110.01(\mathrm{C}(18)) ;$ $119.54(\mathrm{CN}) ; 128.52(\mathrm{C}(8)) ; 132.63(\mathrm{C}(7)) ; 147.34(\mathrm{C}(5))$.
17. ($1 \mathrm{R}, 3 \mathrm{R}$)- and ($1 \mathrm{R}, 3 \mathrm{~S}$)-2,2-Dimethyl-3-[2-(2-methyl-1,3-dioxolan-2-yl)ethenyl]-4-methylidenecyclohexa-ne-1-acetaldehyde (21). At $-78^{\circ}, 20(3.3 \mathrm{~g}, 11.8 \mathrm{mmol})$ was dissolved in hexane (50 ml) and DIBAH (16.5 ml , 16.5 mmol) was added by syringe. The soln. was stirred for 4 h and allowed to warm to r.t. Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. was added, and the mixture stirred for 30 min , diluted with $\mathrm{H}_{2} \mathrm{O}$ and worked up as usual, affording $2.99 \mathrm{~g}(91 \%)$ of 21 after purification by FC (hexane/AcOEt 9:1).

Data of (2R,6R)-214): IR (CDCl ${ }_{3}$): 3081w, 2961s, 2924s, 2887s, $1721 s, 1645 m, 1260 s .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\left.\mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.67(s, \mathrm{Me}(16)) ; \quad 0.88(s, \mathrm{Me}(17)) ; \quad 1.29\left(q d, J=13.3, \quad 4.2, \quad \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; \quad 1.47(s, \mathrm{Me}(19)) ; \quad 1.61$ $(m, \mathrm{H}-\mathrm{C}(2)) ; 1.95\left(d q, J=12.4,4.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.10\left(d d, J=16.5,3.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right) ; 2.10\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right)$; $2.33\left(q d, J=13.6,2.6, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.47(d, J=10.3 \mathrm{H}-\mathrm{C}(6)) ; 2.58\left(d d, J=16.5,3.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right) ; 3.86$, $3.92\left(2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.49(' t ', J=0.5, \mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)) ; 4.76$ (t ', $J=0.5, \mathrm{H}-\mathrm{C}(18)$ trans to $\left.\mathrm{C}(6)\right)$; $5.43(d, J=15.6, \mathrm{H}-\mathrm{C}(8)) ; 5.89(d d, J=15.6,10.3, \mathrm{H}-\mathrm{C}(7)) ; 9.76\left(d ', J=0.5,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left.\left(75.5 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): 15.31(\mathrm{C}(17)) ; 25.17(\mathrm{C}(19)) ; 27.47(\mathrm{C}(16)) ; 29.96(\mathrm{C}(3)) ; \quad 35.85(\mathrm{C}(4)) ; 35.85(\mathrm{C}(1))$; $41.60(\mathrm{C}(2)) ; 45.67\left(\mathrm{CH}_{2} \mathrm{CHO}\right) ; 56.88(\mathrm{C}(6)) ; 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 107.29(\mathrm{C}(9)) ; 108.75(\mathrm{C}(18)) ; 129.11(\mathrm{C}(8))$; $133.87(\mathrm{C}(7)) ; 148.90(\mathrm{C}(5)) ; 202.59\left(\mathrm{CH}_{2} \mathrm{CHO}\right) . \mathrm{MS}: 278\left(58, \mathrm{M}^{+}\right), 263(73), 206(67), 165(49), 109(90), 67(100)$.

Data of (2R,6S)-214): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.78(\mathrm{~s}, \mathrm{Me}(16)) ; 0.86(s, \mathrm{Me}(17)) ; 1.26\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right)$; $1.42(\mathrm{~s}, \mathrm{Me}(19)) ; 1.64\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.11\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(4), 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CHO}\right) ; 2.21(q d, J=12.4,4.0$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.50\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6), 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right) ; 3.82,3.92\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.61\left(s^{\prime}, \mathrm{H}-\mathrm{C}(18)\right.$ cis to $\left.\mathrm{C}(6)\right)$; $4.66(' s, \mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)) ; 5.39(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 6.06(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) ; 9.74(s, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHO}$).
18. Ethyl 4-\{(1R,3R)- and (1R,3S)-2,2-Dimethyl-3-[2-(2-methyl-1,3-dioxolan-2-yl)ethenyl]-4-methylidenecyclohexyl) -2-methylbut-2-enoate (22) At 0°, (diethylphosphinyl)propanoate ($3.65 \mathrm{ml}, 17 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ and $\mathrm{NaOEt}(7.5 \mathrm{ml}, 20 \mathrm{mmol})$ was added by syringe. The brown soln. was stirred for 50 min and $21(2.99,10.74 \mathrm{mmol})$ was added. The soln. was stirred for additional 30 min and worked up as usual. Purification by FC (hexane/AcOEt 9:1) afforded $3.72 \mathrm{~g}(96 \%)$ of 22.

Data of (2R,6R)-224):IR (CDCl_{3}): 3082w, 2968s, 2891s, $1700 v s, 1681 \mathrm{~m}, 1480 \mathrm{~s}, 1374 \mathrm{~s}, 1282 \mathrm{~s}, 1217 \mathrm{~s}$. $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.69(s, \mathrm{Me}(16)) ; 0.93(s, \mathrm{Me}(17)) ; 1.21\left(q d, J=13.3,4.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.28$ $(1, \mathrm{MeCH} 2 \mathrm{O}) ; 1.38(d d d, J=16.1,8.0,4.0, \mathrm{H}-\mathrm{C}(2)) ; 1.48(s, \mathrm{Me}(19)) ; 1.67\left(d q, J=12.4,4.0, \mathrm{H}_{\text {eq }}-\mathrm{C}(3)\right)$; $1.81\left(\mathrm{~s}, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; \quad 1.89\left(m, 1 \quad \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; \quad 2.01\left(q d, J=12.4, \quad 4.0, \quad \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; \quad 2.32\left(m, 1 \quad \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ;$ $2.33\left(q d, J=12.4,3.2, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.49(d, J=10.0, \mathrm{H}-\mathrm{C}(6)) ; 3.85,3.96\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.17\left(q, \mathrm{MeCH}_{2} \mathrm{O}\right)$; 4.47 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.73\left(s^{\prime}, \mathrm{H}-\mathrm{C}(18)\right.$ trans to $\left.\mathrm{C}(6)\right) ; 5.41(d, J=16, \mathrm{H}-\mathrm{C}(8)) ; 5.91(d d, J=16,10.3$, $\left.\mathrm{H}-\mathrm{C}(7)) ; 6.74\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 12.48\left(\mathrm{MeCH}_{2} \mathrm{O}\right) ; 14.28\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ;$ $15.10(\mathrm{C}(17)) ; 25.18(\mathrm{C}(19)) ; 27.47(\mathrm{C}(16)) ; 29.12(\mathrm{C}(3)) ; 29.73\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 36.10(\mathrm{C}(4)) ; 38.63(\mathrm{C}(1)) ; 47.77(\mathrm{C}(2)) ;$
$57.07(\mathrm{C}(6)) ; 60.40\left(\mathrm{MeCH}_{2} \mathrm{O}\right) ; 64.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 107.32(\mathrm{C}(9)) ; 108.28(\mathrm{C}(18)) ; 128.34\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 129.43(\mathrm{C}(8)) ;$ 133.62(C(7)); $142.13\left(C\left(2^{\prime \prime}\right)\right) ; 149.52(C(5)) ; 168.14\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) . \mathrm{MS}: 362\left(35, M^{+}\right), 347(94), 317(3), 217(4), 173(15)$, 147(7), 121 (11), 100(18), 87(63), 73(15), 43(25), $28(100)$.

Data of ($2 \mathrm{R}, 6 \mathrm{~S}$)-224): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.77(\mathrm{~s}, \mathrm{Me}(16)) ; \quad 0.87(\mathrm{~s}, \mathrm{Me}(17)) ; \quad 1.15$ $\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.23\left(t, \mathrm{MeCH}_{2} \mathrm{O}\right) ; 1.37(\mathrm{~s}, \mathrm{Me}(19)) ; 1.56\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 1.74\left(\mathrm{~s}, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.84(\mathrm{~m}$, $\left.\mathrm{H}_{2 \mathrm{x}}-\mathrm{C}(4)\right) ; 2.07\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.22\left(\mathrm{~m}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.41(\mathrm{~d}, \mathrm{~J}=9.0, \mathrm{H}-\mathrm{C}(6)) ; 3.76,3.85\left(2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; 4.17 ($q, \mathrm{MeCH}_{2} \mathrm{O}$); 4.53 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)$); 4.58 ($\mathrm{s}^{\prime}, \mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $5.34(d, \mathrm{~J}=16, \mathrm{H}-\mathrm{C}(8)$); $\left.5.97(d d, J=16,10.3, \mathrm{H}-\mathrm{C}(7)) ; 6.69\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 12.41\left(\mathrm{MeCH}_{2} \mathrm{O}\right) ;$ $14.23\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; \quad 22.35(\mathrm{C}(17)) ; \quad 24.97(\mathrm{C}(19)) ; \quad 26.93(\mathrm{C}(16)) ; \quad 28.43(\mathrm{C}(3)) ; \quad 29.02\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; \quad 31.04(\mathrm{C}(4)) ;$ $37.18(\mathrm{C}(1)) ; 41.87(\mathrm{C}(2)) ; 58.90(\mathrm{C}(6)) ; 60.27\left(\mathrm{MeCH}_{2} \mathrm{O}\right) ; 64.33\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 107.21(\mathrm{C}(9)) ; 109.00(\mathrm{C}(18)) ;$ $128.26\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 129.75(\mathrm{C}(8)) ; 131.96(\mathrm{C}(7)) ; 141.98\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 148.94(\mathrm{C}(5)) ; 167.92\left(\mathrm{C}\left(4^{\prime \prime}\right)\right)$.
19. $4-\{(1 \mathrm{R}, 3 \mathrm{R})$ - and ($1 \mathrm{R}, 3 \mathrm{~S})-2,2-$ Dimethyl-3-[2-(2-methyl-1,3-dioxolan-2-yl)ethenyl]-4-methylidenecyclo-hexyl\}-2-methylbut-2-en-1-ol (16). At - $70^{\circ}, 22(4.13 \mathrm{~g}, 11 \mathrm{mmol}$) was dissolved in hexane (110 ml) and DIBAH (1 m in hexane, $27.5 \mathrm{ml}, 27.5 \mathrm{mmol}$) was added by syringe at such a rate that the temp. did not exceed -65°. The soin. was allowed to warm up to r.t., diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. and worked up with $\mathrm{H}_{2} \mathrm{O}$. FC (hexane/AcOEt $88: 12)$ afforded $1.35 \mathrm{~g}(38.4 \%)$ of $\left.(2 R, 6 R)-16^{4}\right)$ and $2.17 \mathrm{~g}(61.6 \%)$ of $\left.(2 R, 6 S)-16^{4}\right)$.

Data of (2R, 6 R$)-16^{4}$): IR (CDCl_{3}): 3420s, 2980s, 2940s, 2882s, 1741s, 1649m, 1441s, 1374s, 1208s, 1041 s . $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.70(s, \mathrm{Me}(16)) ; \quad 0.94(s, \mathrm{Me}(17)) ; \quad 1.22\left(q d, J=13.3,4.2, \quad \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right)$; $1.24(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)) ; 1.26$ (br. $s, \mathrm{OH}) ; 1.50(s, \mathrm{Me}(19)) ; 1.66\left(s, \mathrm{Me}-\mathrm{C}\left(3^{\prime}\right)\right) ; 1.70\left(d q, J=12.4,4.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right)$; $1.73\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.01\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.24\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.33\left(q d, J=12.4,3.2, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ;$ $2.41(d, J=10.2, \mathrm{H}-\mathrm{C}(6)) ; 3.88,3.98\left(2 m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.02\left(\mathrm{~s}, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 4.48$ ($\mathrm{s}^{\prime}, \mathrm{H}-\mathrm{C}(18) \mathrm{cis}$ to $\left.\mathrm{C}(6)\right)$; 4.75 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $5.42\left(\mathrm{tm}, J=6.1, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 5.42(d, J=15.4, \mathrm{H}-\mathrm{C}(8)) ; 5.93(d d, J=15.4$, $\left.10.2, \quad \mathrm{H}-\mathrm{C}(7)) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100.61 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 13.80\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; \quad 15.11(\mathrm{C}(17)) ; \quad 25.18(\mathrm{C}(19)) ;$ $27.45(\mathrm{C}(16)) ; \quad 28.38\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; \quad 28.87(\mathrm{C}(3)) ; \quad 36.25(\mathrm{C}(4)) ; \quad 38.66(\mathrm{C}(1)) ; \quad 48.31(\mathrm{C}(2)) ; \quad 57.19(\mathrm{C}(6)) ;$ $64.42\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 68.97\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 107.36(\mathrm{C}(9)) ; 108.01(\mathrm{C}(18)) ; 128.34\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 129.68(\mathrm{C}(8)) ; 133.41(\mathrm{C}(7))$; $135.27\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 149.94(\mathrm{C}(5))$. MS: $320\left(13, M^{+}\right), 305(100), 287(3), 235(1), 219(2), 165(3), 135(4), 121(5), 107(8)$, 100(17), $87(63), 73(15)$.

Data of (2R,6S)-16 ${ }^{4}$): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.83(\mathrm{~s}, \mathrm{Me}(16)) ; 0.91(\mathrm{~s}, \mathrm{Me}(17)) ; 1.20\left(m, \mathrm{H}_{\mathrm{ax}}-\right.$ $\mathrm{C}(3)) ; 1.45,(m, \mathrm{H}-\mathrm{C}(2)) ; 1.46(s, \mathrm{Me}(19)) ; 1.50(\mathrm{br} . \mathrm{s}, \mathrm{OH}) ; 1.65\left(\mathrm{~s}, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.70\left(\mathrm{~m}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 1.74(m, 1$ $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.16\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(4), 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.64(d, \mathrm{~J}=9.0, \mathrm{H}-\mathrm{C}(6)) ; 3.86,3.95\left(2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.05(\mathrm{~s}, 2$ $\mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)$); 4.61 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.67$ ($\mathrm{s}^{\prime}, \mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); $5.42\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right.$); $\left.5.42(d, J=15, \mathrm{H}-\mathrm{C}(8)) ; 6.06(d d, J=15,9, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 13.81\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right)$; $22.48(\mathrm{C}(17)) ; 25.02(\mathrm{C}(19)) ; 27.01(\mathrm{C}(16)) ; 27.70\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 28.19(\mathrm{C}(3)) ; 31.24(\mathrm{C}(4)) ; 37.29(\mathrm{C}(1)) ; 42.37(\mathrm{C}(2))$; $59.03(\mathrm{C}(6)) ; 64.41\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 68.97\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 107.43(\mathrm{C}(9)) ; 108.77(\mathrm{C}(18)) ; 125.96\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 130.25(\mathrm{C}(8))$; $131.66(\mathrm{C}(7)) ; 135.26\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 149.49(\mathrm{C}(5))$.
20. 4-\{($\mathrm{R}, 3 \mathrm{R})-3-(4-$ Hydroxy-3-methylbut-2-enyl)-2,2-dimethyl-6-methylidenecyclohexyl $\}$ but-3-en-2-one $\left.((2 R, 6 R)-23)^{4}\right)$. At $50^{\circ},(2 R, 6 R)-16(1.35 \mathrm{~g}, 4.22 \mathrm{mmol})$ and pyridinum toluene-4-sulfonate $(10 \mathrm{mg})$ were dissolved in acetone/ $\mathrm{H}_{2} \mathrm{O} 1: 1(20 \mathrm{ml})$ and stirred for 30 min . The mixture was allowed to cool to r.t. and worked up as usual. FC (hexane/AcOEt $85: 15$) afforded $1.20 \mathrm{~g}(100 \%)$ of $(2 R, 6 R)-23$.

Data of (2R,6R $)-23^{4}$): IR (CDCl_{3}): 3426s, $3080 \mathrm{w}, 2960 \mathrm{~s}, 2922 \mathrm{~s}, 2861 \mathrm{~s}, 1740 \mathrm{~s}, 1670 \mathrm{vs}, 1647 \mathrm{~m}, 1629 \mathrm{~m}, 1440 \mathrm{~s}$, $\left.1370 s, 1295 s, 1000 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.79(s, \mathrm{Me}(16)) ; 0.95(s, \mathrm{Me}(17)) ; 1.20(q d, J=13.3,4.2$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.26(\mathrm{br} . \mathrm{s}, \mathrm{OH}), 1.28(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)) ; 1.66\left(\mathrm{~s}, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.73\left(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 1.75(d q, J=12.4,4.0$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.03\left(q d, J=12.4,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.25\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.30(s, \mathrm{Me}(19)) ; 2.36(q d, J=12.4,3.2$, $\left.\mathrm{H}_{\mathrm{cq}}-\mathrm{C}(4)\right) ; 2.57(d, J=10.0, \mathrm{H}-\mathrm{C}(6)) ; 4.02\left(s, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 4.45$ ($s s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.81$ (s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)) ; 5.42\left(\mathrm{tm}, J=6.1, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 6.10(d, J=16.0, \mathrm{H}-\mathrm{C}(8)) ; 6.94(d d, J=16.0,10.0, \mathrm{H}-\mathrm{C}(7))$. ${ }^{13} \mathrm{C}$-NMR ($\left.\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 13.80\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 15.25(\mathrm{C}(17)) ; 27.29(\mathrm{C}(19)) ; 27.62(\mathrm{C}(16)) ; 28.11\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ;$ $28.64(\mathrm{C}(3)) ; 36.11(\mathrm{C}(4)) ; 39.06(\mathrm{C}(1)) ; 48.10(\mathrm{C}(2)) ; 57.75(\mathrm{C}(6)) ; 68.88\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 108.76(\mathrm{C}(18)) ; 125.52\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ;$ 133.63(C(8)); 135.53(C(3")); 146.89(C(7)); 148.58(C(5)); 198.11(C(9)). MS: 276(5, M ${ }^{+}$), 258(6), 243(3), 233(8), $215(15), 191(8), 175(11), 159(10), 149(73), 135(18), 121(37), 109(38), 93(26), 81(34), 69(35), 55(17), 43(100)$.

Data of (2R,6S)-234): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 0.83(s, \mathrm{Me}(16)) ; \quad 0.92(s, \mathrm{Me}(17)) ; \quad 1.20$ $\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.46(m, \mathrm{H}-\mathrm{C}(2)) ; 1.61\left(s, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.73\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 1.76\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 1.95(\mathrm{br} . s$, $\mathrm{OH}) ; 2.18\left(m, 2 \mathrm{H}-\mathrm{C}(4), 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.22(\mathrm{~s}, \mathrm{Me}(19)) ; 2.60(d, J=9.0 \mathrm{H}-\mathrm{C}(6)) ; 3.99\left(s, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 4.65$ (s^{\prime}, $\mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)) ; 4.72$ ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ trans to $\left.\mathrm{C}(6)\right) ; 5.38\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 6.07(d, J=15.8, \mathrm{H}-\mathrm{C}(8))$; $7.03(d d, J=15.8,9, \mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{4}\right): 13.71\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 22.07(\mathrm{C}(17)) ; 27.12(\mathrm{C}(16)) ;$ $27.26(\mathrm{C}(19)) ; 27.67\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 28.00(\mathrm{C}(3)) ; 31.20(\mathrm{C}(4)) ; 37.75(\mathrm{C}(1)) ; 42.41(\mathrm{C}(2)) ; 59.95(\mathrm{C}(6)) ; 68.62\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ;$ $110.39(\mathrm{C}(18)) ; 125.12\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 131.80(\mathrm{C}(8)) ; 135.47\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 147.11(\mathrm{C}(7)) ; 147.61(\mathrm{C}(5)) ; 198.32(\mathrm{C}(9))$.
21. 1-[($\mathrm{R}, 3 \mathrm{R})-3-(4-$ Hydroxy-3-methylbut-2-enyl)-2,2-dimethyl-6-methylidenecyclohexyl $\}$-3-methylpenta-1,4-dien-3-ol $\left.((2 R, 6 R)-24)^{4}\right)$. At $-50^{\circ},(2 R, 6 R)-23(1.2 \mathrm{~g}, 4.22 \mathrm{mmol})$ were dissolved in abs. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$ and vinylmagnesium bromide (1 m in THF, $14.8 \mathrm{ml}, 14.8 \mathrm{mmol}$) was added by syringe. The mixture was stirred for 20 min , allowed to warm up to r.t. and diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. Further workup was carried out as usual. Purification by FC (hexane/AcOEt 85:15) afforded $760 \mathrm{mg}(60 \%)$ of $(2 R, 6 R)-24$.

Data of (2R,6R)-244): IR (CDCl ${ }_{3}$): 3350s, 3080w, 2960s, 2920s, 2842s, $1640 \mathrm{~m}, 1450 \mathrm{~m}, 1439 \mathrm{~m}, 1386 \mathrm{~s}, 1367 \mathrm{~s}$, $\left.1250 s, 1000 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.69(s, \mathrm{Me}(16)) ; 0.95(s, \mathrm{Me}(17)) ; 1.17(q d, J=12.4,3.3$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.26(\mathrm{tm}, J=11, \mathrm{H}-\mathrm{C}(2)) ; 1.41(d, J=2, \mathrm{Me}(19)) ; 1.65\left(s, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.70(d q, J=12.4,4.0$, $\left.\mathrm{H}_{\text {eq }}-\mathrm{C}(3)\right) ; 1.71\left(d m, J=11.9,1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 1.73(\mathrm{br} . \mathrm{s}, \mathrm{OH}) ; 2.01\left(t d, J=11.0,3.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.23(d d m$, $\left.J=11.9,4.0,1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.33\left(d q, J=11.0,3.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.41(d, J=8.4, \mathrm{H}-\mathrm{C}(6)) ; 4.01\left(s, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right)$; 4.49 (' s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\mathrm{C}(6)$); 4.75 (' s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); 5.07 (ddd, $J=8.8,1.5,1.0, \mathrm{H}-\mathrm{C}(11)$ trans to $\mathrm{C}(9)) ; 5.25(d d d, J=14.4,1,1.0, \mathrm{H}-\mathrm{C}(11)$ cis to $\mathrm{C}(9)) ; 5.42\left(d\right.$ sept., $\left.J=6.1, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 5.58(d, J=12.8$, $\mathrm{H}-\mathrm{C}(8)) ; 5.78(d d, J=12.8,8.4, \mathrm{H}-\mathrm{C}(7)) ; 6.00(d d d, J=14.4,8.8,1.5, \mathrm{H}-\mathrm{C}(10)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\left.\mathrm{CDCl}_{3}\right)^{4}\right): 13.78\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 15.13(\mathrm{C}(17)) ; 27.44(\mathrm{C}(19)) ; 28.09(\mathrm{C}(16)) ; 28.38\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 28.85(\mathrm{C}(3)) ; 36.26(\mathrm{C}(4)) ;$ $38.78(\mathrm{C}(1)) ; 48.36(\mathrm{C}(2)) ; 57.51(\mathrm{C}(6)) ; 68.96\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 73.30(\mathrm{C}(9)) ; 108.00(\mathrm{C}(18)) ; 112.06(\mathrm{C}(11)) ; 126.03\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ;$ $127.31(\mathrm{C}(7)): 135.24\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 138.51(\mathrm{C}(8)) ; 144.22(\mathrm{C}(10)) ; 150.10(\mathrm{C}(5))$.

Data of ($2 \mathrm{R}, 6 \mathrm{~S} ;-24^{4}$): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.82(\mathrm{~s}, \mathrm{Me}(16)) ; 0.89(\mathrm{~s}, \mathrm{Me}(17)) ; 1.19(d q, J=9.4$, $\left.4.8, \mathrm{H}_{2 x}-\mathrm{C}(3)\right) ; 1.35(s, \mathrm{Me}(19)) ; 1.45(\mathrm{tm}, J=9.3, \mathrm{H}-\mathrm{C}(2)) ; 1.64\left(s, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.69(d d d, J=11.0,6.5,3.0$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 1.72($ br. $s, \mathrm{OH}) ; 1.76\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.15\left(m, 2 \mathrm{H}-\mathrm{C}(4), 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.47(d, J=7.4, \mathrm{H}-\mathrm{C}(6))$; $4.00\left(s, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 4.60\left(s^{\prime}, \mathrm{H}-\mathrm{C}(18)\right.$ cis to $\left.\mathrm{C}(6)\right) ; 4.65$ (s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); 5.04 (ddd, $J=8.8,1.5,1.0$, $\mathrm{H}-\mathrm{C}(11)$ wans to $\mathrm{C}(9)) ; 5.21(d d d, J=14.4,1,1.0, \mathrm{H}-\mathrm{C}(11)$ cis to $\mathrm{C}(9)) ; 5.40\left(\mathrm{tm}, J=6.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right)$; $5.57(d, J=12.8, \quad \mathrm{H}-\mathrm{C}(8)) ; 5.91(d d d, J=12.8,7.4,3.5, \mathrm{H}-\mathrm{C}(7)) ; 5.93(d d d, J=14.4,8.82, \quad \mathrm{H}-\mathrm{C}(10))$. $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 14.05\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 22.42(\mathrm{C}(17)) ; 27.02(\mathrm{C}(16)) ; 27.89\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 28.06(\mathrm{C}(19))$; $28.15(\mathrm{C}(3)) ; 31.22(\mathrm{C}(4)) ; 37.37(\mathrm{C}(1)) ; 42.04(\mathrm{C}(2)) ; 59.53(\mathrm{C}(6)) ; 70.28\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 73.15(\mathrm{C}(9)) ; 108.66(\mathrm{C}(18)) ;$ $112.10(\mathrm{C}(11)) ; 127.68(\mathrm{C}(7)) ; 129.49\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 130.47\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 136.96(\mathrm{C}(8)) ; 144.15(\mathrm{C}(10)) ; 149.60(\mathrm{C}(5))$.
22. $1-\{(1 \mathrm{R}, 3 \mathrm{R})-3-[4-($ Acetoxy)-3-methylbut-2-enyl]-2,2-dimethyl-6-methylidenecyclohexyl $\}$-3-methylpenta-1,4-dien-3-ol $\left.((2 R, 6 R)-25)^{4}\right)$. To a soln. of $(2 R, 6 R)-24(760 \mathrm{mg}, 2.5 \mathrm{mmol})$ in THF/pyridine $2: 1(30 \mathrm{ml}), \mathrm{Ac}_{2} \mathrm{O}$ $(5 \mathrm{ml})$ was added. The soln. was stirred overnight, worked up as usual affording $850 \mathrm{mg}(98 \%)$ of $\left.(2 R, 6 R)-25^{4}\right)$ after FC (hexane/AcOEt 9:1).

Data of (2R,6R)-25 ${ }^{4}$): $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.67(s, \mathrm{Me}(16)) ; 0.93(s, \operatorname{Me}(17)) ; 1.15(q d, J=12.4$, 3.3, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.26(\mathrm{tm}, J=11, \mathrm{H}-\mathrm{C}(2)) ; 1.39(d, J=2, \mathrm{Me}(19)) ; 1.64\left(s, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.67(d q, J=12.4,4.0$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 1.71\left(d m, J=11.9,1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 1.73(\mathrm{br} . s, \mathrm{OH}), 2.01\left(t d, J=11.0,3.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.06(s, \mathrm{Ac})$; $2.22\left(d d m, J=11.9,4.0,1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.32\left(d q, J=11.0,3.0, \mathrm{H}_{\text {eq }}-\mathrm{C}(4)\right) ; 2.39(d, J=8.4, \mathrm{H}-\mathrm{C}(6)) ; 4.45$ $\left(s, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 4.48$ (s ', $\mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right) ; 4.73$ (s ', $\mathrm{H}-\mathrm{C}(18)$ trans to $\mathrm{C}(6)$); 5.06 ($d d d, J=8.8,1.5,1.0$, $\mathrm{H}-\mathrm{C}(11)$ trans to $\mathrm{C}(9)) ; 5.24(d d d, J=14.4,1,1.0, \mathrm{H}-\mathrm{C}(11)$ cis to $\mathrm{C}(9)) ; 5.45\left(\right.$ dsept., $\left.J=6.1, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right)$; $5.57(d, J=12.8, \mathrm{H}-\mathrm{C}(8)) ; 5.77(d d, J=12.8,8.4, \mathrm{H}-\mathrm{C}(7)) ; 5.98(d d d, J=14.4,8.8,1.5, \mathrm{H}-\mathrm{C}(10)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left.\left(100.61 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)^{4}\right): \quad 14.04\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; \quad 15.10(\mathrm{C}(17)) ; \quad 20.99(\mathrm{MeCO}) ; \quad 27.42(\mathrm{C}(19)) ; \quad 28.06(\mathrm{C}(16)) ;$ $28.55\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 28.81(\mathrm{C}(3)) ; 36.21(\mathrm{C}(4)) ; 38.74(\mathrm{C}(1)) ; 48.13(\mathrm{C}(2)) ; 57.46(\mathrm{C}(6)) ; 70.31\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 73.29(\mathrm{C}(9))$; $108.10(\mathrm{C}(18)) ; 112.03(\mathrm{C}(11)) ; 127.22(\mathrm{C}(7)) ; 129.61\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 130.51\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 138.55(\mathrm{C}(8)) ; 144.22(\mathrm{C}(10)) ;$ $150.01(\mathrm{C}(5)) ; 170.98(\mathrm{MeCO}) . \mathrm{MS}: 346\left(0.1, M^{+}\right), 328(5), 310(46), 292(14), 283(4), 271(6), 248(23), 243(34)$, $203(15), 187(12), 175(12), 159(14), 147(25), 135(23), 119(27), 107(28), 99(30), 93(25), 81(20), 75(26), 69(21)$, $55(20), 43(63), 28(65), 18(100)$.

Data of ($\left.\left.2 \mathrm{R}, 6 \mathrm{~S})-25^{4}\right):{ }^{2} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 0.80(s, \mathrm{Me}(16)) ; 0.88(s, \mathrm{Me}(17)) ; 1.17(d q, J=9.4$, 4.8, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 1.34(\mathrm{~s}, \mathrm{Me}(19)) ; 1.45(\mathrm{tm}, \mathrm{J}=9.3, \mathrm{H}-\mathrm{C}(2)) ; 1.61\left(\mathrm{~s}, \mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 1.67(d d d, J=11.0,6.5,3.0$, $\left.\mathrm{H}_{\mathrm{cq}}-\mathrm{C}(3)\right) ; 1.74\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 1.77$ (br. $\left.s, \mathrm{OH}\right) ; 2.06(\mathrm{~s}, \mathrm{Ac}) ; 2.14\left(m, 2 \mathrm{H}-\mathrm{C}(4), 1 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 2.45(d, J=7.4$, $\mathrm{H}-\mathrm{C}(6))$; $4.44\left(s, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right)$; 4.59 ($s^{\prime}, \mathrm{H}-\mathrm{C}(18)$ cis to $\left.\mathrm{C}(6)\right)$; $4.63\left(s^{\prime}, \mathrm{H}-\mathrm{C}(18)\right.$ trans to $\left.\mathrm{C}(6)\right)$; $5.02(d d d, J=8.8,1.5,1.0, \mathrm{H}-\mathrm{C}(11)$ trans to $\mathrm{C}(9)) ; 5.20(d d d, J=14.4,1,1.0, \mathrm{H}-\mathrm{C}(11)$ cis to $\mathrm{C}(9)) ; 5.43$ $\left(t m, J=6.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 5.56(d, J=12.8, \mathrm{H}-\mathrm{C}(8)) ; 5.90(d d d, J=12.8,7.4,3.5, \mathrm{H}-\mathrm{C}(7)) ; 5.93(d d d, J=14.4$, 8.8, 2, H-C(11)). $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{4}\right): 14.05\left(\mathrm{Me}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 20.98(\mathrm{MeCO}) ; 22.42(\mathrm{C}(17))$; $27.02(\mathrm{C}(16)) ; 27.89\left(\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 28.06(\mathrm{C}(19)) ; 28.15(\mathrm{C}(3)) ; 31.22(\mathrm{C}(4)) ; 37.37(\mathrm{C}(1)) ; 42.04(\mathrm{C}(2)) ; 59.53(\mathrm{C}(6)) ;$ $70.28\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; \quad 73.15(\mathrm{C}(9)) ; \quad 108.66(\mathrm{C}(18)) ; \quad 112.10(\mathrm{C}(11)) ; \quad 127.68(\mathrm{C}(7)) ; \quad 129.49\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ; \quad 130.47\left(\mathrm{C}\left(3^{\prime \prime}\right)\right)$; $136.96(\mathrm{C}(8)) ; 144.15(\mathrm{C}(10)) ; 149.60(\mathrm{C}(5)) ; 170.98(\mathrm{MeCO})$.
23. $\{5-\{(1 \mathrm{R}, 3 \mathrm{R})-3-[4-($ Acetylaxy $)-3$-methylhut-2-enyl]-2,2-dimethyl-6-methylidenecyclohexyl $\}$-3-methylpen-ta-2,4-dienyl) triphenylphosphonium Bromide $\left.((2 R, 6 R)-3)^{4}\right)$. At r.t., $(2 R, 6 R)-25(790 \mathrm{mg}, 2.28 \mathrm{mmol})$ and $\mathrm{PPh}_{3} \cdot \mathrm{HBr}(860 \mathrm{mg}, 2.5 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}(7 \mathrm{ml})$. The soln. was stirred for 20 h and the solvent evaporated at 35°. The light yellow residue was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to
a cooled and vigorously stirred soln. of (t - Bu) OMe /hexane. After complete addition, the solvent was carefully decanted and the precipitate washed several times with cold $(t-\mathrm{Bu}) \mathrm{OMe} /$ hexane. The remaining solvent was carefully evaporated at 35°. The white powder was dried under high vacuum, affording $1.45 \mathrm{~g}(95 \%)$ of $(2 R, 6 R)-3$, which was directly used for the next step without characterization.
24. (all-E, $\left.2 \mathrm{R}, 6 \mathrm{R}, 2^{\prime} \mathrm{R}, 6^{\prime} \mathrm{R}\right)-2,2^{\prime}$-Bis $\left(4^{\prime \prime}\right.$-hydroxy- $3^{\prime \prime}$-methylbut- $2^{\prime \prime}$-enyl) $)-\gamma, \gamma-$ carotene $\left.{ }^{4}\right)\left(=\left(\right.\right.$ all $-\mathrm{E}, 2 \mathrm{R}, 6 \mathrm{R}, 2^{\prime} \mathrm{R},-$ $\sigma^{\prime} R$)-sarcinaxanthin; (all-E, $\left.2 R, 6 R, 2^{\prime} R, 6^{\prime} R\right)-1$). At r.t., $(2 R, 6 R)-3(840 \mathrm{mg}, 1.05 \mathrm{mmol})$ and C_{10}-dial $2(86 \mathrm{mg}$, $0.525 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $5 \% \mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was added. After $1 \frac{1}{2} \mathrm{~h}, 5 \% \mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$ (1 ml) was added and the red soln. stirred overnight. The solvent was evaporated and the red residue purified by FC (hexane/AcOEt $95: 5$ to $85: 15$) yielding 114.5 mg of $1,95 \mathrm{mg}$ of $1 / \mathrm{C}_{30}$-aldehyde $2: 1$ and 90 mg of C_{30}-aldehyde. Yield of $1: 80 \%$ rel. to 2 , yield 60% rel. to ($2 R, 6 R$)-3.

Data of (all-E,2R, $6 \mathrm{R}, 2^{\prime} \sigma^{\prime} \mathrm{R}$)-1: Recrystallization from hexane/AcOEt. M.p.: 133-136 ${ }^{\circ}$. UV/VIS (hexane): 468, 437, 414. $\mathrm{CD}\left(\mathrm{Et}_{2} \mathrm{O} / i-\mathrm{PrOH} / \mathrm{EtOH} 5: 5: 2,-180^{\circ}\right): 200(+0.89), 205(-14.13), 241(-1.43), 267.5(-15.12)$, $332(+1.28), 405(-2.70), 417(-0.58), 426.5(-2.75), 444(-0.65), 449(-6.22), 466(+2.16), 483(-5.05)$, $491(+7.04), 509(+1.16) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ Table. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ Table. MS: $704\left(56, M^{+}\right), 686(1), 612(12), 598(2), 241(8), 253(10), 223(16), 209(27), 197(26), 183(27), 171(36), 157(44)$, $145(53), 133(35), 119(48), 105(45), 91$ (100), 81 (27), $69(28), 43(33), 18(31)$.

Data of ($2 \mathrm{R}, 6 \mathrm{~S}, 2^{\prime} \mathrm{R}, 6^{\prime} \mathrm{S}$)-1: UV/VIS (hexane): $468,437,414$. CD: not measured. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): Table. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): Table.

REFERENCES

[1] M. Gerspacher, H. Pfander, Helv. Chim. Acta, 1989, 72, 151.
[2] S. Hertzberg, S. Liaaen-Jensen, Acta Chem. Scand. 1977, 31, 215.
[3] O. B. Weeks, A. R. Montes, A. G. Andrewes, J. Bacteriol. 1980, 141, 1272.
[4] J. P. Férézou, M. Julia, Tetrahedron 1990, 46, 475.
[5] H. Wolleb, H. Pfander, Helv. Chim. Acta 1986, 69, 646.
[6] H. Wolleb, H. Pfander, Helv. Chim. Acta 1986, 69, 1505.
[7] I. Kitagawa, H. Shibuta, H. Fujioka, A. Kajiwara, Y. Yamamoto, S. Tsuji, A. Takagi, M. Hori, Chem. Pharm. Bull. 1981, 29, 2540.
[8] K. Weinges, W. Sipos, Chem. Ber. 1988, 121, 363.
[9] I. Kitagawa, S. Tsuji, H. Fujioka, A. Kajiwara, Y. Yamamoto, H. Shibuta, Chem. Pharm. Bull. 1984, 32, 1294.
[10] I. Kitagawa, H. Shibuta, H. Fujioka, A. Kajiwara, Y. Yamamoto, S. Tsuji, K. Murakawa, Chem. Pharm. Bull. 1981, 29, 2548.
[11] H. Mayer, A. Rüttimann, Helv. Chim. Acta 1980, 63, 1451.
[12] J. R. Schrauder, A. Krief, Tetrahedron Lett. 1982, 23, 4389.
[13] T. Greene, G. M. Wuts, 'Protective Groups in Organic Chemistry', Wiley Interscience, New York, 1992.
[14] M. Lanz, Diploma Work, University of Bern, 1994.
[15] J. R. Proudfoot, X. Li, C. Djerassi, J. Org. Chem. 1985, 50, 2026.
[16] Z. Cheng, Ph. D. Thesis, University of Bern, 1994.
[17] V. Caló, F. Ciminale, L. Lopez, P. E. Todesco, J. Chem. Soc. 1971, 3652.

[^0]: ${ }^{1}$) Part 6: [1].
 ${ }^{2}$) Part of the planned Ph. D. thesis of $M . L$.
 ${ }^{3}$) Present address: Department of Chemistry, Faculty of Science, University of Natal, Pietermaritzburg, 3209 South Africa.

[^1]: ${ }^{4}$) Numbering according to the IUPAC/IUB nomenclature rules for carotenoids (see Scheme 4).

